RESUMO
Malignant bone tumors are aggressive tumors, with a high tendency to metastasize, that are observed most frequently in adolescents during rapid growth spurts. Pediatric patients with malignant bone sarcomas, Ewing sarcoma and osteosarcoma, who present with progressive disease have dire survival rates despite aggressive therapy. These therapies can have long-term effects on bone growth, such as decreased bone mineral density and reduced longitudinal growth. New therapeutic approaches are therefore urgently needed for targeting pediatric malignant bone tumors. Harnessing the power of the immune system against cancer has improved the survival rates dramatically in certain cancer types. Natural killer (NK) cells are a heterogeneous group of innate effector cells that possess numerous antitumor effects, such as cytolysis and cytokine production. Pediatric sarcoma cells have been shown to be especially susceptible to NK-cell-mediated killing. NK-cell adoptive therapy confers numerous advantages over T-cell adoptive therapy, including a good safety profile and a lack of major histocompatibility complex restriction. NK-cell immunotherapy has the potential to be a new therapy for pediatric malignant bone tumors. In this manuscript, we review the general characteristics of osteosarcoma and Ewing sarcoma, discuss the long-term effects of sarcoma treatment on bones, and the barriers to effective immunotherapy in bone sarcomas. We then present the laboratory and clinical studies on NK-cell immunotherapy for pediatric malignant bone tumors. We discuss the various donor sources and NK-cell types, the engineering of NK cells and combinatorial treatment approaches that are being studied to overcome the current challenges in adoptive NK-cell therapy, while suggesting approaches for future studies on NK-cell immunotherapy in pediatric bone tumors.
Assuntos
Neoplasias Ósseas , Neoplasias , Osteossarcoma , Sarcoma de Ewing , Sarcoma , Adolescente , Humanos , Criança , Sarcoma de Ewing/terapia , Osteossarcoma/terapia , Neoplasias/terapia , Imunoterapia Adotiva , Neoplasias Ósseas/terapia , Células Matadoras Naturais , Imunoterapia , Terapia Baseada em Transplante de Células e TecidosRESUMO
Relapsed and refractory (R/r) disease in paediatric acute leukaemia remains the first reason for treatment failure. Advances in molecular characterisation can ameliorate the identification of genetic biomarkers treatment strategies for this disease, especially in high-risk patients. The purpose of this study was to analyse a cohort of R/r children diagnosed with acute lymphoblastic (ALL) or myeloid (AML) leukaemia in order to offer them a targeted treatment if available. Advanced molecular characterisation of 26 patients diagnosed with R/r disease was performed using NGS, MLPA, and RT-qPCR. The clinical relevance of the identified alterations was discussed in a multidisciplinary molecular tumour board (MTB). A total of 18 (69.2%) patients were diagnosed with B-ALL, 4 (15.4%) with T-ALL, 3 (11.5%) with AML and 1 patient (3.8%) with a mixed-phenotype acute leukaemia (MPL). Most of the patients had relapsed disease (88%) at the time of sample collection. A total of 17 patients (65.4%) were found to be carriers of a druggable molecular alteration, 8 of whom (47%) received targeted therapy, 7 (87.5%) of them in addition to hematopoietic stem cell transplantation (HSCT). Treatment response and disease control were achieved in 4 patients (50%). In conclusion, advanced molecular characterisation and MTB can improve treatment and outcome in paediatric R/r acute leukaemias.