Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Med Genet A ; 191(1): 135-143, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271811

RESUMO

We describe the phenotype of 22 male patients (20 probands) carrying a hemizygous missense variant in MED12. The phenotypic spectrum is very broad ranging from nonspecific intellectual disability (ID) to the three well-known syndromes: Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, or Ohdo syndrome. The identified variants were randomly distributed throughout the gene (p = 0.993, χ2 test), but mostly outside the functional domains (p = 0.004; χ2 test). Statistical analyses did not show a correlation between the MED12-related phenotypes and the locations of the variants (p = 0.295; Pearson correlation), nor the protein domain involved (p = 0.422; Pearson correlation). In conclusion, establishing a genotype-phenotype correlation in MED12-related diseases remains challenging. Therefore, we think that patients with a causative MED12 variant are currently underdiagnosed due to the broad patients' clinical presentations.


Assuntos
Blefarofimose , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Masculino , Humanos , Complexo Mediador/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Blefarofimose/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Síndrome
2.
Clin Genet ; 97(5): 677-687, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31898314

RESUMO

Since the discovery of the FMR1 gene and the clinical and molecular characterization of Fragile X Syndrome in 1991, more than 141 genes have been identified in the X-chromosome in these 28 years thanks to applying continuously evolving molecular techniques to X-linked intellectual disability (XLID) families. In the past decade, array comparative genomic hybridization and next generation sequencing technologies have accelerated gene discovery exponentially. Classically, XLID has been subdivided in syndromic intellectual disability (S-XLID)-where intellectual disability (ID) is always associated with other recognizable physical and/or neurological features-and non-specific or non-syndromic intellectual disability (NS-XLID) where the only common feature is ID. Nevertheless, new advances on the study of these entities have showed that this classification is not always clear-cut because distinct variants in several of these XLID genes can result in S-XLID as well as in NS-XLID. This review focuses on the current knowledge on the XLID genes involved in non-syndromic forms, with the emphasis on their pathogenic mechanism, thus allowing the possibility to elucidate why some of them can give both syndromic and non-syndromic phenotypes.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Hibridização Genômica Comparativa , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/patologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/patologia , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Mutação , Linhagem
4.
Front Mol Biosci ; 7: 135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766278

RESUMO

There are four classes of CGG repeat alleles in the FMR1 gene: normal alleles have up to 44 repeats; patients with Fragile X Syndrome have more than 200 repeats; those between 55 and 200 CGGs are considered FMR1 premutation alleles, because they are associated with maternal expansions of the number of CGGs in the next generation and finally, alleles between 45 and 54 CGGs are called intermediate or gray zone alleles. In these last categories, the stability depends on the presence of AGG interruptions, which usually occurs between 9 and 10 CGGs. In this context, we have studied retrospectively 66 women with CGG repeats between 45 and 65, and their offspring. In total 87 transmissions were analyzed with triplet repeat primed PCR using AmplideX® FMR1 PCR (Asuragen, Austin, TX, USA) and we found that alleles with CGG repeats between 45 and 58 do not expand in the next generation except two cases with 56 repeats and 0 AGG interruptions. Furthermore, we have found four females with alleles with more than 59 CGG repeats and 2 AGG interruptions that do not expand either. Alleles from 56 CGG repeats without AGGs expand in all cases. In light of these results and those of the literature, we consider that the risk of unstable transmissions should be based on the presence or absence of AGG interruptions and not on the classical cutoffs which define each category of FMR1 alleles. The application of these results in the genetic and reproductive counseling is essential and AGG interruptions should always be studied.

5.
Genes (Basel) ; 11(1)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906484

RESUMO

X-linked intellectual disability (XLID) is known to contribute up to 10% of intellectual disability (ID) in males and could explain the increased ratio of affected males observed in patients with ID. Over the past decade, next-generation sequencing has clearly stimulated the gene discovery process and has become part of the diagnostic procedure. We have performed targeted next-generation sequencing of 82 XLID genes on 61 non-related male patients with suggestive non-syndromic XLID. These patients were initially referred to the molecular genetics laboratory to exclude Fragile X Syndrome. The cohort includes 47 male patients with suggestive X-linked family history of ID meaning that they had half-brothers or maternal cousins or uncles affected; and 14 male patients with ID and affected brothers whose mothers show skewed X-inactivation. Sequencing data analysis identified 17 candidate variants in 16 patients. Seven families could be re-contacted and variant segregation analysis of the respective eight candidate variants was performed: HUWE1, IQSEC2, MAOA, MED12, PHF8, SLC6A8, SLC9A6, and SYN1. Our results show the utility of targeted next-generation sequencing in unravelling the genetic origin of XLID, especially in retrospective cases. Variant segregation and additional studies like RNA sequencing and biochemical assays also helped in re-evaluating and further classifying the genetic variants found.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Exoma/genética , Síndrome do Cromossomo X Frágil , Genes Ligados ao Cromossomo X/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Complexo Mediador/genética , Monoaminoxidase/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Linhagem , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Estudos Retrospectivos , Trocadores de Sódio-Hidrogênio/genética , Fatores de Transcrição , Sequenciamento do Exoma/métodos
6.
Front Neurol ; 11: 41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117010

RESUMO

Hereditary spastic paraplegias (HSPs) are a heterogeneous group of genetic disorders with spastic paraparesis as the main clinical feature. Complex forms may co-occur with other motor, sensory, and cognitive impairment. A growing number of loci and genes are being identified, but still more than 50% of the patients remain without molecular diagnosis. We present a Spanish family with autosomal dominant HSP and intellectual disability (ID) in which we found a possible dual genetic diagnosis with incomplete penetrance and variable expressivity in the parents and three siblings: a heterozygous duplication of 15q11.2-q13.1 found by array CGH and a novel missense heterozygous change in REEP1 [c.73A>G; p.(Lys25Glu)] found by whole exome sequencing (WES). Following the standard genetic diagnosis approach in ID, array CGH analysis was first performed in both brothers affected by spastic paraparesis and ID from school age, and a heterozygous duplication of 15q11.2-q13.1 was found. Subsequently, the duplication was also found in the healthy mother and in the sister, who presented attention deficit/hyperactivity disorder (ADHD) symptoms from school age and pes cavus with mild pyramidal signs at 22 years of age. Methylation analysis revealed that the three siblings carried the duplication unmethylated in the maternal allele, whereas their mother harbored it methylated in her paternal allele. Functional studies revealed an overexpression of UBE3A and ATP10A in the three siblings, and the slightest cognitive phenotype of the sister seems to be related to a lower expression of ATP10A. Later, searching for the cause of HSP, WES was performed revealing the missense heterozygous variant in REEP1 in all three siblings and the father, who presented subtle pyramidal signs in the lower limbs as well as the sister. Our findings reinforce the association of maternally derived UBE3A overexpression with neurodevelopmental disorders and support that a spectrum of clinical severity is present within families. They also reveal that a dual genetic diagnosis is possible in patients with presumed complex forms of HSP and cognitive impairment.

7.
Front Genet ; 10: 1074, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737052

RESUMO

X-linked intellectual disability (XLID) is known to explain up to 10% of the intellectual disability in males. A large number of families in which intellectual disability is the only clinically consistent manifestation have been described. While linkage analysis and candidate gene testing were the initial approaches to find genes and variants, next generation sequencing (NGS) has accelerated the discovery of more and more XLID genes. Using NGS, we resolved the genetic cause of MRX82 (OMIM number 300518), a large Spanish Basque family with five affected males with intellectual disability and a wide phenotypic variability among them despite having the same pathogenic variant. Although the previous linkage study had mapped the locus to an interval of 7.6Mb in Xq24-Xq25 of the X chromosome, this region contained too many candidate genes to be analysed using conventional approaches. NGS revealed a novel nonsense variant: c.118C > T; p.Gln40* in UPF3B, a gene previously implicated in XLID that encodes a protein involved in nonsense-mediated mRNA decay (NMD). Further molecular studies showed that the mRNA transcript was not completely degraded by NMD. However, UPF3B protein was not detected by conventional Western Blot analysis at least downstream of the 40 residue demonstrating that the phenotype could be due to the loss of functional protein. This is the first report of a premature termination codon before the three functional domains of the UPF3B protein and these results directly implicate the absence of these domains with XLID, autism and some dysmorphic features.

8.
Front Genet ; 9: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29434620

RESUMO

Mutations in CHD7 have been shown to be a major cause of CHARGE syndrome, which presents many symptoms and features common to other syndromes making its diagnosis difficult. Next generation sequencing (NGS) of a panel of intellectual disability related genes was performed in an adult patient without molecular diagnosis. A splice donor variant in CHD7 (c.5665 + 1G > T) was identified. To study its potential pathogenicity, exons and flanking intronic sequences were amplified from patient DNA and cloned into the pSAD® splicing vector. HeLa cells were transfected with this construct and a wild-type minigene and functional analysis were performed. The construct with the c.5665 + 1G > T variant produced an aberrant transcript with an insert of 63 nucleotides of intron 28 creating a premature termination codon (TAG) 25 nucleotides downstream. This would lead to the insertion of 8 new amino acids and therefore a truncated 1896 amino acid protein. As a result of this, the patient was diagnosed with CHARGE syndrome. Functional analyses underline their usefulness for studying the pathogenicity of variants found by NGS and therefore its application to accurately diagnose patients.

9.
F1000Res ; 7: 1189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271587

RESUMO

Background: Androgen steroid hormones are key drivers of prostate cancer. Previous work has shown that androgens can drive the expression of alternative mRNA isoforms as well as transcriptional changes in prostate cancer cells. Yet to what extent androgens control alternative mRNA isoforms and how these are expressed and differentially regulated in prostate tumours is unknown. Methods: Here we have used RNA-Seq data to globally identify alternative mRNA isoform expression under androgen control in prostate cancer cells, and profiled the expression of these mRNA isoforms in clinical tissue. Results: Our data indicate androgens primarily switch mRNA isoforms through alternative promoter selection. We detected 73 androgen regulated alternative transcription events, including utilisation of 56 androgen-dependent alternative promoters, 13 androgen-regulated alternative splicing events, and selection of 4 androgen-regulated alternative 3' mRNA ends. 64 of these events are novel to this study, and 26 involve previously unannotated isoforms. We validated androgen dependent regulation of 17 alternative isoforms by quantitative PCR in an independent sample set. Some of the identified mRNA isoforms are in genes already implicated in prostate cancer (including LIG4, FDFT1 and RELAXIN), or in genes important in other cancers (e.g. NUP93 and MAT2A). Importantly, analysis of transcriptome data from 497 tumour samples in the TGCA prostate adenocarcinoma (PRAD) cohort identified 13 mRNA isoforms (including TPD52, TACC2 and NDUFV3) that are differentially regulated in localised prostate cancer relative to normal tissue, and 3 ( OSBPL1A, CLK3 and TSC22D3) which change significantly with Gleason grade and  tumour stage. Conclusions: Our findings dramatically increase the number of known androgen regulated isoforms in prostate cancer, and indicate a highly complex response to androgens in prostate cancer cells that could be clinically important.


Assuntos
Processamento Alternativo , Androgênios/fisiologia , Neoplasias da Próstata/genética , RNA Mensageiro/genética , Regiões 5' não Traduzidas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/patologia , Isoformas de Proteínas/genética , RNA não Traduzido/genética
10.
Genes (Basel) ; 7(10)2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27775646

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI) are definitely related to the fragile X mental retardation 1 (FMR1) premutation (PM). Additional medical problems have also been associated with the PM, such as fibromyalgia, endocrine, and psychiatric disorders. To improve our understanding in the field, we reviewed all PM carriers and their reasons for any medical referrals from 104 fragile X families molecularly diagnosed in our laboratory and living in the Spanish Basque Country. After signing the written informed consent, we studied their electronic medical records in order to identify the disorders associated with the PM and their frequencies. We obtained clinical data in 188 PM carriers (147 women and 41 men). In women, the frequency of FXPOI (22.61%) was similar to that previously reported in PM carriers. In men, the frequency of definite FXTAS (28.57%) was lower than reported elsewhere. Furthermore, thyroid pathology was associated with the PM, the frequency of hypothyroidism being much higher in the studied region than in the general population (8.84% vs. 0.93%). Finally, we found no association with fibromyalgia or psychiatric problems. These findings represent another population contribution in this field and may be useful for the clinical management of PM carriers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA