RESUMO
Authenticity and adulteration detection are primary concerns of various stakeholders, such as researchers, consumers, manufacturers, traders, and regulatory agencies. Traditional approaches for authenticity and adulteration detection in edible oils are time-consuming, complicated, laborious, and expensive; they require technical skills when interpreting the data. Over the last several years, much effort has been spent in academia and industry on developing vibrational spectroscopic techniques for quality, authenticity, and adulteration detection in edible oils. Among them, Fourier transforms infrared (FT-IR) spectroscopy has gained enormous attention as a green analytical technique for the rapid monitoring quality of edible oils at all stages of production and for detecting and quantifying adulteration and authenticity in edible oils. The technique has several benefits such as rapid, precise, inexpensive, and multi-analytical; hence, several parameters can be predicted simultaneously from the same spectrum. Associated with chemometrics, the technique has been successfully implemented for the rapid detection of adulteration and authenticity in edible oils. After presenting the fundamentals, the latest research outcomes in the last 10 years on quality, authenticity, and adulteration detection in edible oils using FT-IR spectroscopy will be highlighted and described in this review. Additionally, opportunities, challenges, and future trends of FT-IR spectroscopy will also be discussed.
Assuntos
Gorduras Insaturadas na Dieta , Contaminação de Alimentos , Gorduras Insaturadas na Dieta/análise , Alimentos , Contaminação de Alimentos/análise , Óleos de Plantas/química , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Globally, power stations generate huge amounts of the hazardous waste heavy oil fly ash (HOFA), which is rich in Ni, V, Fe, S, and dumped into landfills. Thus, exploring new approaches for a safe recycling and sustainable management of HOFA is needed and of great environmental interest. The potential application of HOFA as an amendment to sandy soils has not been studied yet. This is the first research investigating the potentiality of using HOFA as a soil conditioner. To this end, we conducted a greenhouse experiment in order to investigate the impacts of HOFA addition (1.2, 2.4, 3.6 t ha-1) to sandy soil on the total and available content of nutrients (e.g., S, Fe, Mn, Cu, Zn) and toxic elements (TEs; e.g., Cd, Co, Cr, Ni, Pb, V) in the soil and their phytoextraction and translocation by lemongrass (Cymbopogon citratus) and common sage (Salvia officinalis). We also assessed the impact of humic acid (HA) foliar application (50 and 100 l ha-1) on the growth and elements accumulation by the two plants. The studied HOFA was acidic and highly enriched in S (43,268.0), V (3,527.0), Ni (1774.0), and Fe (15,159.0) (units in mg kg-1). The X-ray absorption near edge structure (XANES) data showed that V in HOFA was composed primarily of V(IV) sorbed onto goethite, V(V) sorbed onto humic substances, in the forms of V2O3, and VCl4. Addition of the lower doses of HOFA (1.2 and 2.4 t ha-1) did not change significantly soil pH, salinity, and the total and available elements content compared to the unamended soil. Although the elements content in the 3.6 t ha-1 HOFA-treated soil was significantly higher than the untreated, the total content of all elements (except for Ni) was lower than the maximum allowable concentrations in soils. HOFA addition, particularly in the highest dose (3.6 t ha-1), decreased significantly the growth and biomass of both plants. Common sage accumulated more elements than lemongrass; however, the elements content in the plants was lower than the critical concentrations for sensitive plants. The foliar application of humic acid enhanced significantly the plant growth and increased their tolerance to the HOFA-induced stress. We conclude that the addition of HOFA up to 2.4 t ha-1 in a single application as amendment to sandy soils is not likely to create any TE toxicity problems to plants, particularly if combined with a foliar application of humic acid; however, repeated additions of HOFA may induce toxicity. These findings should be verified under field conditions.
Assuntos
Cinza de Carvão , Substâncias Húmicas , Poluentes do Solo , Solo , Poluentes do Solo/análise , Solo/química , Cymbopogon , Fertilizantes , Enxofre , Metais Pesados/análiseRESUMO
Climate changes and the rapid expanding human population have become critical concerns for global food security. One of the promising solutions is the employment of plant growth regulators (PGRs) for increasing crop yield and overcoming adverse growth conditions, such as desert climate. Recently, the apocarotenoid zaxinone and its two mimics (MiZax3 and MiZax5) have shown a promising growth-promoting activity in cereals and vegetable crops under greenhouse and field conditions. Herein, we further investigated the effect of MiZax3 and MiZax5, at different concentrations (5 and 10 µM in 2021; 2.5 and 5 µM in 2022), on the growth and yield of the two valuable vegetable crops, potato and strawberry, in the Kingdom of Saudi of Arabia. Application of both MiZax significantly increased plant agronomic traits, yield components and total yield, in five independent field trials from 2021 to 2022. Remarkably, the amount of applied MiZax was far less than humic acid, a widely applied commercial compound used here for comparison. Hence, our results indicate that MiZax are very promising PGRs that can be applied to promote the growth and yield of vegetable crops even under desert conditions and at relatively low concentrations.
Assuntos
Fragaria , Solanum tuberosum , Humanos , Clima Desértico , Produtos Agrícolas , Verduras , Reguladores de Crescimento de Plantas/farmacologiaRESUMO
Quinoa is one of the highest nutritious grains, and global consumption of quinoa flour has increased as people pay more attention to health. Due to its high value, quinoa flour is susceptible to adulteration. Cross-contamination between quinoa flour and other flour can be easily neglected due to their highly similar appearance. Therefore, detecting adulteration in quinoa flour is important to consumers, industries, and regulatory agencies. In this study, portable hyperspectral imaging in the visible near-infrared (VNIR) spectral range (400-1000 nm) was applied as a rapid tool to detect adulteration in quinoa flour. Quinoa flour was adulterated with wheat, rice, soybean, and corn in the range of 0-98% with 2% increments. Partial least squares regression (PLSR) models were developed, and the best model for detecting the % authentic flour (quinoa) was obtained by the raw spectral data with R2p of 0.99, RMSEP of 3.08%, RPD of 8.77, and RER of 25.32. The model was improved, by selecting only 13 wavelengths using bootstrapping soft shrinkage (BOSS), to R2p of 0.99, RMSEP of 2.93%, RPD of 9.18, and RER of 26.60. A visualization map was also generated to predict the level of quinoa in the adulterated samples. The results of this study demonstrate the ability of VNIR hyperspectral imaging for adulteration detection in quinoa flour as an alternative to the complicated traditional method.
RESUMO
A microwave hot pressing machine (MHPM) was used to heat the colander to produce fixed oils from each of castor, sunflower, rapeseed, and moringa seed and compared them to those obtained using an ordinary electric hot pressing machine (EHPM). The physical properties, namely the moisture content of seed (MCs), the seed content of fixed oil (Scfo), the yield of the main fixed oil (Ymfo), the yield of recovered fixed oil (Yrfo), extraction loss (EL), six Efficiency of fixed oil extraction (Efoe), specific gravity (SGfo), refractive index (RI) as well as chemical properties, namely iodine number (IN), saponification value (SV), acid value (AV), and the yield of fatty acid (Yfa) of the four oils extracted by the MHPM and EHPM were determined. Chemical constituents of the resultant oil were identified using GC/MS after saponification and methylation processes. The Ymfo and SV obtained using the MHPM were higher than those for the EHPM for all four fixed oils studied. On the other hand, each of the SGfo, RI, IN, AV, and pH of the fixed oils did not alter statistically due to changing the heating tool from electric band heaters into a microwave beam. The qualities of the four fixed oils extracted by the MHPM were very encouraging as a pivot of the industrial fixed oil projects compared to the EHPM. The prominent fatty acid of the castor fixed oil was found to be ricinoleic acid, making up 76.41% and 71.99% contents of oils extracted using the MHPM and EHPM, respectively. In addition, the oleic acid was the prominent fatty acid in each of the fixed oils of sunflower, rapeseed, and moringa species, and its yield by using the MHPM was higher than that for the EHPM. The role of microwave irradiation in facilitating fixed oil extrusion from the biopolymeric structured organelles (lipid bodies) was protruded. Since it was confirmed by the present study that using microwave irradiation is simple, facile, more eco-friendly, cost-effective, retains parent quality of oils, and allows for the warming of bigger machines and spaces, we think it will make an industrial revolution in oil extraction field.
RESUMO
Passivated-carbon quantum dots (P-CQDs) have been attracting great interest as an antimicrobial therapy tool due to their bright fluorescence, lack of toxicity, eco-friendly nature, simple synthetic schemes, and possession of photocatalytic functions comparable to those present in traditional nanometric semiconductors. Besides synthetic precursors, CQDs can be synthesized from a plethora of natural resources including microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC). Converting MCC into NCC is performed chemically via the top-down route, while synthesizing CODs from NCC can be performed via the bottom-up route. Due to the good surface charge status with the NCC precursor, we focused in this review on synthesizing CQDs from nanocelluloses (MCC and NCC) since they could become a potential source for fabricating carbon quantum dots that are affected by pyrolysis temperature. There are several P-CQDs synthesized with a wide spectrum of featured properties, namely functionalized carbon quantum dots (F-CQDs) and passivated carbon quantum dots (P-CQDs). There are two different important P-CQDs, namely 2,2'-ethylenedioxy-bis-ethylamine (EDA-CQDs) and 3-ethoxypropylamine (EPA-CQDs), that have achieved desirable results in the antiviral therapy field. Since NoV is the most common dangerous cause of nonbacterial, acute gastroenteritis outbreaks worldwide, this review deals with NoV in detail. The surficial charge status (SCS) of the P-CQDs plays an important role in their interactions with NoVs. The EDA-CQDs were found to be more effective than EPA-CQDs in inhibiting the NoV binding. This difference may be attributed to their SCS as well as the virus surface. EDA-CQDs with surficial terminal amino (-NH2) groups are positively charged at physiological pH (-NH3+), whereas EPA-CQDs with surficial terminal methyl groups (-CH3) are not charged. Since the NoV particles are negatively charged, they are attracted to the positively charged EDA-CQDs, resulting in enhancing the P-CQDs concentration around the virus particles. The carbon nanotubes (CNTs) were found to be comparable to the P-CQDs in the non-specific binding with NoV capsid proteins, through complementary charges, π-π stacking, and/or hydrophobic interactions.
RESUMO
Despite the proven biological activity of the aerial part extract of Alchemilla vulgaris, scarce information is available about the activity of the root extract. This encouraged us to initiate the current investigation to study the cytotoxic activity of A. vulgaris methanolic root extract against various cancer cell lines in vitro, along with its antimicrobial activity and phytochemical screening. MTT assay was applied to test the cytotoxic effect against the prostate (PC-3), breast (MCF-7) and colorectal adenocarcinoma (Caco-2), together with normal Vero cells. Flow cytometry was employed to assess cell cycle arrest and apoptosis vs. necrosis in PC-3 cells. The expression of apoptosis-related genes (BAX, BCL2 and P53) was quantified by qRT-PCR analysis. The obtained results showed strong antiproliferative activity on the three cancer cell lines and the normal Vero cells in a dose-dependent manner. A high selectivity index (SI) was recorded against the three cell lines with PC-3 cells showing the highest SI and the lowest IC50. This effect was associated with cell cycle arrest at G1 phase and induction of total apoptosis at 27.18% being mainly early apoptosis. Apoptosis induction was related to the upregulation of the proapoptotic genes P53 and BAX and the downregulation of the antiapoptotic gene BCL2. Additionally, the extract demonstrated in vitro antibacterial activity against Agrobacterium tumefaciens, Serratia marcescens and Acinetobacter johnsoni. Additionally, it showed antifungal activity against Rhizoctonia solani, Penicillium italicum and Fusarium oxysporium. Seven phenolic acids and seven flavonoids were detected. The predominant phenolic acids were cinnamic and caffeic acids, while hisperdin and querestin were the principal flavonoids. These findings provide clear evidence about the promising proapoptotic effect of A. vulgaris root extract, which contributes to laying the basis for broader and in-depth future investigations.
RESUMO
Effective alternative strategies and methodological approaches are critically necessary for cancer prevention and therapy. In this study, we investigated the antitumor potential of neem fruit mesocarp and epicarp extracts. The chemical composition of the derived extracts was characterized using GC-MS. Data were collected on the antimicrobial activity of the extracts in addition to the cytotoxicity effect evaluated against PC-3, MCF-7, and Caco-2 cancer cell lines, compared with the normal Vero cells. Cell-cycle arrest, apoptosis, and expression of apoptosis-related genes were assessed on PC-3 cells. Both extracts had significant antiproliferative effects on all tested cell lines in a dose-dependent manner, with the mesocarp extract being more potent. Both extracts also showed high antibacterial and antifungal activities. These results were related to the chemical constituents of the extracts identified by the GC-MS analysis. The extract of neem fruit mesocarp caused cell-cycle arrest at G2/M phase of PC-3 cells. The cytotoxicity of neem mesocarp extract is strongly correlated with the induction of apoptosis, where it caused downregulation of the antiapoptotic BCL2 gene but upregulation of the proapoptotic P53 and BAX genes. This study showed that neem fruit extract is potential anticancer material in the future.
RESUMO
The therapeutic importance of Balanites aegyptiaca in folk medicine for the treatment of several common human diseases has led researchers to conduct phytochemical and pharmacological studies on extracts from various parts of the plant. In the current study, the phytochemical composition of the B. aegyptiaca methanolic fruit extract was characterized, and its antimicrobial activity was evaluated together with the cytotoxic activity against MCF-7, PC-3, and Caco-2, compared with normal Vero cells. Further, its effects on cell cycle arrest, apoptosis induction and expression of apoptosis-related genes were assessed. The phytochemical screening revealed the presence of fatty acids and their esters in addition to phytosterols, steroid derivatives, and bioflavonoid glycosides with oleic and palmitic acids being the prevalent components (24.12 and 21.56%, respectively). The results showed considerable cytotoxic activity of the extract against the three cancer cell lines (MCF-7, PC-3, and Caco-2) with a selectivity index ranging from 5.07 to 6.52. This effect was further confirmed with the accompanied increased total apoptosis of treated PC-3 cells (19.22% of the total number of cells) compared to the control cells (0.64% of the total number of cells) with cell cycle arrest at G1 phase and the increased transcription of pro-apoptotic genes including P53 (3.69) and BAX (3.33) expressed as fold change (2^ ΔΔCT). The calculated minimum inhibitory concentration (MIC) was similar (62.5 µg/mL) against the three tested bacterial strains (Acinetobacter johnsonii, Serratia marcescens and Agrobacterium tumefaciens), while it was higher than 1000 µg/mL for the fungal species (Rhizoctonia solani, Penicillium italicum, and Fusarium oxysporium). Our findings suggest a promising anticancer activity for B. aegyptiaca, which paves the way for more detailed future studies.
RESUMO
Shrimp waste is rich in organic compounds and essential plant nutrients, e.g., calcium (Ca), and converting these wastes to organic fertilizer is important for environmental preservation and to achieve sustainable agricultural management. In the current study, Ca-rich biochar was prepared from shrimp wastes (SWB) by pyrolysis at 300 °C. We hypothesized that the Ca-rich biochar will help in solving the problem of plant growth in saline soil by reducing sodium (Na) uptake and mitigating oxidative stress. The current study aimed to investigate the effect of SWB on the quality of saline sandy soil and the mechanism of salt resistance in pearl millet (Pennisetum glaucum L.). Pearl millet plants were planted in saline sandy soil (10 dS m-1) in wooden boxes (1.3 × 0.8 m size and 0.4 m height), and 5 doses (0, 1.0, 1.5, 2.0, and 2.5% (w/w)) of SWB were added. SWB application increased the soil quality and nutrient uptake by pearl millet plants. The highest rate of SWB increased the soil microbial biomass carbon and the activity of dehydrogenase enzyme by 43 and 47% compared to the control soil. SWB application reduced the uptake of sodium (Na+) and chloride (Cl-) and increased the K/Na ratio in the leaf tissues. SWB addition significantly increased the activity of antioxidant enzymes, e.g., ascorbate peroxidase (APX), polyphenol oxidase (PPO), and pyrogallol peroxidases (PPX). The application of 2.5% SWB to the saline soil increased the soluble carbohydrates and proline in plant leaves by 75 and 60%, respectively, and reduced the malondialdehyde (MDA) by 32% compared to the control. SWB enhanced the antioxidant defense and mitigated oxidative stress by improving the synthesis of osmoprotectants, e.g., soluble carbohydrates and proline. Sandy saline soils in arid and semiarid areas suffer greatly from low organic matter contents, which reduces the soil quality and increases the risk of salt during plant growth. The high organic matter and calcium content (30%) in the shrimp waste-derived biochar improved the quality of the saline sandy soil, reduced the uptake of toxic salts, and increased the quality of the forage material. The addition of recycled shrimp waste to saline low-fertility soils improves soil productivity and is safe for soil health.
RESUMO
Soil amendments may increase the slate tolerance of plants consequently; it may increase the opportunity of using saline water in agricultural production. In the present pot trial, the effects of biochar (BIC) and compost (COM) on roselle (Hibiscus sabdariffa L.) irrigated with saline water (EC = 7.50 dS m-1) was studied. Roselle plants were amended with biochar (BIC1 and BIC2) or compost (COM1 and COM2) at rates of 1 and 2% (w/w), as well as by a mixture of the two amendments (BIC1+). The experiment included a control soil without any amendments. Biochar and compost significantly enhanced the soil quality and nutrients availability under saline irrigation. Compost and biochar improved the degree of soil aggregation, total soil porosity and soil microbial biomass. BIC1 + COM1 increased the soil microbial biomass carbon and nitrogen over the individual application of each amendments and control soil. BIC1 + COM1 increased the activity of dehydrogenase and phosphatase enzymes. Growth of roselle plants including: plant height, shoot fresh and dry weight, and chlorophyll were significantly responded to the added amendments. The maximum sepal's yield was achieved from the combined application of compost and biochar. All the investigated treatments caused remarkable increases in the total flavonol and anthocyanin. BIC1 + COM1 increased the total anthocyanin and flavonol by 29 and 17% above the control. Despite the notable improvement in soil and roselle quality as a result of the single addition of compost or biochar, there is a clear superiority due to mixing the two amendments. It can be concluded that mixing of biochar and compost is recommended for roselle plants irrigated with saline water.