Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178231

RESUMO

Regular exercise can reduce depression. However, the uptake of exercise is limited in patients with end-stage renal disease undergoing hemodialysis. To address the gap, we designed a gamified non-weight-bearing intradialytic exercise program (exergame). The intradialytic exergame is virtually supervised based on its interactive feedback via wearable sensors attached on lower extremities. We examined the effectiveness of this program to reduce depression symptoms compared to nurse-supervised intradialytic exercise in 73 hemodialysis patients (age = 64.5 ± 8.7years, BMI = 31.6 ± 7.6kg/m2). Participants were randomized into an exergame group (EG) or a supervised exercise group (SG). Both groups received similar exercise tasks for 4 weeks, with three 30 min sessions per week, during hemodialysis treatment. Depression symptoms were assessed at baseline and the fourth week using the Center for Epidemiologic Studies Depression Scale. Both groups showed a significant reduction in depression score (37%, p < 0.001, Cohen's effect size d = 0.69 in EG vs. 41%, p < 0.001, d = 0.65 in SG) with no between-group difference for the observed effect (p > 0.050). The EG expressed a positive intradialytic exercise experience including fun, safety, and helpfulness of sensor feedback. Together, results suggested that the virtually supervised low-intensity intradialytic exergame is feasible during routine hemodialysis treatment. It also appears to be as effective as nurse-supervised intradialytic exercise to reduce depression symptoms, while reducing the burden of administrating exercise on dialysis clinics.


Assuntos
Depressão/terapia , Exercício Físico , Monitorização Fisiológica/métodos , Idoso , Depressão/etiologia , Terapia por Exercício/métodos , Feminino , Humanos , Falência Renal Crônica/complicações , Falência Renal Crônica/patologia , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/instrumentação , Diálise Renal , Índice de Gravidade de Doença , Dispositivos Eletrônicos Vestíveis
2.
Sci Rep ; 13(1): 15000, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696878

RESUMO

Urban growth aimed at developing smart cities confronts several obstacles, such as difficulties and costs in constructing stations and meeting consumer demands. These are possible to overcome by integrating Renewable Energy Resources (RESs) with the help of demand side management (DSM) for managing generation and loading profiles to minimize electricity bills while accounting for reduction in carbon emissions and the peak to average ratio (PAR) of the load. This study aims to achieve a multi-objective goal of optimizing energy management in smart cities which is accomplished by optimally allocating RESs combined with DSM for creating a flexible load profile under RESs and load uncertainty. A comprehensive study is applied to IEEE 69-bus with different scenarios using Sea-Horse Optimization (SHO) for optimal citing and sizing of the RESs while serving the objectives of minimizing total power losses and reducing PAR. SHO performance is evaluated and compared to other techniques such as Genetic Algorithm (GA), Grey Wolf Optimization (GWO), Whale Optimization (WO), and Zebra Optimization (ZO) algorithms. The results show that combining elastic load shifting with optimal sizing and allocation using SHO achieves a global optimum solution for the highest power loss reduction while using a significantly smaller sized RESs than the counterpart.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA