Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474089

RESUMO

N-myc downstream-regulated gene 2 (NDRG2), which is a tumour suppressor, is frequently lost in many types of tumours, including adult T-cell leukaemia/lymphoma (ATL). The downregulation of NDRG2 expression is involved in tumour progression through the aberrant phosphorylation of several important signalling molecules. We observed that the downregulation of NDRG2 induced the translocation of protein arginine methyltransferase 5 (PRMT5) from the nucleus to the cytoplasm via the increased phosphorylation of PRMT5 at Serine 335. In NDRG2low ATL, cytoplasmic PRMT5 enhanced HSP90A chaperone activity via arginine methylation, leading to tumour progression and the maintenance of oncogenic client proteins. Therefore, we examined whether the inhibition of PRMT5 activity is a drug target in NDRG2low tumours. The knockdown of PRMT5 and binding partner methylsome protein 50 (MEP50) expression significantly demonstrated the suppression of cell proliferation via the degradation of AKT and NEMO in NDRG2low ATL cells, whereas NDRG2-expressing cells did not impair the stability of client proteins. We suggest that the relationship between PRMT5/MEP50 and the downregulation of NDRG2 may exhibit a novel vulnerability and a therapeutic target. Treatment with the PRMT5-specific inhibitors CMP5 and HLCL61 was more sensitive in NDRG2low cancer cells than in NDRG2-expressing cells via the inhibition of HSP90 arginine methylation, along with the degradation of client proteins. Thus, interference with PRMT5 activity has become a feasible and effective strategy for promoting cancer vulnerability in NDRG2low ATL.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Leucemia-Linfoma de Células T do Adulto , Linfoma , Neoplasias , Adulto , Humanos , Proteína-Arginina N-Metiltransferases/metabolismo , Leucemia-Linfoma de Células T do Adulto/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina/metabolismo , Metilação , Proteínas Supressoras de Tumor/metabolismo
2.
Exp Cell Res ; 410(2): 112969, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34883111

RESUMO

MEL1 (MDS1/EVI1-like gene 1/PRDM16), a zinc finger protein, is located near the chromosomal breakpoint at 1p36 in human acute myeloid leukemia (AML) cells with the t (1; 3) (p36; q21) translocation. Mel1/Prdm16 is not only a causative gene of leukemia, but also has multiple regulatory functions, such as the regulation of fat metabolism. To investigate the function of Mel1/Prdm16, we generated Mel1/Prdm16-deficient mice, but homozygous deficiency (Mel1/Prdm16-/-) was embryonic lethal at E 11.5. Heterozygous mice showed abnormal cartilage and bone formation in the postnatal skull and long bones, suggesting that Mel1/Prdm16 expression plays an important role in bone development. In osteoblast and chondrocyte cell lines, Mel1/Prdm16 promotes the differentiation of chondrocytes and regulates the differentiation of osteoblasts. Transient repression of the master regulator Runx2 is required for chondrocyte differentiation at an early stage of differentiation. However, in Mel1/Prdm16-suppressed ATDC5 cells, the initial suppression of Runx2 was lacking and its expression was upregulated at the beginning of differentiation, suggesting that chondrogenic differentiation is suppressed in Mel1/Prdm16+/- mesenchymal progenitor cells because Runx2 expression is upregulated during the early stage of differentiation. Thus, the Mel1/Prdm16 gene may be involved in the early repression of Runx2 expression during osteochondral differentiation and promote chondrogenic differentiation.


Assuntos
Osso e Ossos/anatomia & histologia , Osso e Ossos/citologia , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Proteína Morfogenética Óssea 2/metabolismo , Cartilagem/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Transdução de Sinais , Fatores de Transcrição/deficiência
3.
Cancer Sci ; 113(4): 1406-1416, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35100463

RESUMO

We have previously reported that the proanthocyanidin (PAC) fraction of blueberry leaf extract (BB-PAC) inhibits the proliferation of HTLV-1-infected adult T-cell leukemia (ATL) by inducing apoptosis. In the present study, we further analyzed the structure of BB-PAC and elucidated the molecular mechanism underlying the inhibitory function of HTLV-1-infected and ATL cells. After hot water extraction with fractionation with methanol-acetone, BB-PAC was found to be concentrated in fractions 4 to 7 (Fr7). The strongest inhibition of ATL cell growth was observed with Fr7, which contained the highest BB-PAC polymerization degree of 14. The basic structure of BB-PAC is mainly B-type bonds, with A-type bonds (7.1%) and cinchonain I units as the terminal unit (6.1%). The molecular mechanism of cytotoxicity observed around Fr7 against ATL cells was the degradation of JAK1 to 3 and the dephosphorylation of STAT3/5, which occurs by proteasome-dependent proteolysis, confirming that PAC directly binds to heat shock protein 90 (HSP90). JAK degradation was caused by proteasome-dependent proteolysis, and we identified the direct binding of PAC to HSP90. In addition, the binding of cochaperone ATPase homolog 1 (AHA1) to HSP90, which is required for activation of the cofactor HSP90, was inhibited by BB-PAC treatment. Therefore, BB-PAC inhibited the formation of the HSP90/AHA1 complex and promoted the degradation of JAK protein due to HSP90 dysfunction. These results suggest that the highly polymerized PAC component from blueberry leaves has great potential as a preventive and therapeutic agent against HTLV-1-infected and ATL cells.


Assuntos
Mirtilos Azuis (Planta) , Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Adulto , Mirtilos Azuis (Planta)/química , Mirtilos Azuis (Planta)/metabolismo , Proliferação de Células , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/metabolismo , Polimerização , Proantocianidinas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
4.
Cancer Sci ; 112(1): 22-30, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33128318

RESUMO

N-myc downstream-regulated gene 2 (NDRG2) is a candidate tumor suppressor in various cancers, including adult T-cell leukemia/lymphoma (ATLL). NDRG2, as a stress-responsive protein, is induced by several stress-related signaling pathways and NDRG2 negatively regulates various signal transduction pathways. Although it has not been found to function alone, NDRG2 binds serine/threonine protein phosphatase 2A (PP2A), generating a complex that is involved in the regulation of various target proteins. The main function of NDRG2 is to maintain cell homeostasis by suppressing stress-induced signal transduction; however, in cancer, genomic deletions and/or promoter methylation may inhibit the expression of NDRG2, resulting in enhanced tumor development through overactivated signal transduction pathways. A wide variety of tumors develop in Ndrg2-deficient mice, including T-cell lymphoma, liver, lung and other tumors, the characteristics of which are similar to those in Pten-deficient mice. In particular, PTEN is a target molecule of the NDRG2/PP2A complex, which enhances PTEN phosphatase activity by dephosphorylating residues in the PTEN C-terminal region. In ATLL cells, loss of NDRG2 expression leads to the failed recruitment of PP2A to PTEN, resulting in the inactivation of PTEN phosphatase with phosphorylation, ultimately leading to the activation of PI3K/AKT. Thus, NDRG2, as a PP2A adaptor, regulates the global phosphorylation of important signaling molecules. Moreover, the downregulation of NDRG2 expression by long-term stress-induced methylation is directly correlated with the development of ATLL and other cancers. Thus, NDRG2 might be important for the development of stress-induced leukemia and other cancers and has become an important target for novel molecular therapies.


Assuntos
Carcinogênese/genética , Neoplasias/genética , Fosforilação/genética , Proteína Fosfatase 2/genética , Proteínas Supressoras de Tumor/genética , Animais , Humanos , Neoplasias/etiologia , Transdução de Sinais/genética
5.
Biochem Biophys Res Commun ; 509(1): 82-88, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30587341

RESUMO

We had previously reported that in addition to p53 inactivation, overexpression of the DNA sensor protein-absent in melanoma 2 (AIM2)-contributes to tumorigenesis of oral squamous cell carcinoma (OSCC). Given that AIM2 is highly expressed in the OSCC tumors from patients with metastasis, we investigated whether AIM2 expression contributes to the progression of OSCC metastasis. In in vitro assays using OSCC cell lines, the high migration and invasion capacity of OSCC cells were dependent on the increased expression of AIM2, resulting in enhanced epithelial-mesenchymal transition (EMT), with EMT-related gene expression. Moreover, the in vivo short-term metastasis assay using orthotopic implantation into immunodeficient mice demonstrated that OSCC cells with high levels of AIM2 expression exhibited enhanced tumor growth in the tongue, resulting in decreased survival of the mice. Further, the cells overexpressing AIM2 dominantly invaded into the tumor lymphatic vessels, unlike OSCC cells with low AIM2 expression. Thus, the high expression of AIM2 in OSCC enhances progression of tumor growth.


Assuntos
Carcinoma de Células Escamosas/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais/genética , Regulação para Cima , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos , Neoplasias Bucais/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/secundário
6.
Biochem Biophys Res Commun ; 490(3): 1086-1092, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28669733

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) is a causative agent of adult T-cell leukemia-lymphoma (ATLL). The HTLV-1-encoded protein Tax plays important roles in the proliferation of HTLV-1-infected T-cells by affecting cellular proteins. In this study, we showed that Tax transcriptionally and post-transcriptionally downregulates the expression of the tumor suppressor gene B-cell leukemia/lymphoma 11B (BCL11B), which encodes a lymphoid-related transcription factor. BCL11B expression was downregulated in HTLV-1-infected T-cell lines at the mRNA and protein levels, and forced expression of BCL11B suppressed the proliferation of these cells. The proteasomal inhibitor MG132 increased BCL11B expression in HTLV-1-infected cell lines, and colocalization of Tax with BCL11B was detected in the cytoplasm of HTLV-1-infected T-cells following MG132 treatment. shRNA knock-down of Tax expression also increased the expression of BCL11B in HTLV-1-infected cells. Moreover, we found that Tax physically binds to BCL11B protein and induces the polyubiquitination of BCL11B and proteasome-dependent degradation of BCL11B. Thus, inactivation of BCL11B by Tax protein may play an important role in the Tax-mediated leukemogenesis.


Assuntos
Produtos do Gene tax/metabolismo , Infecções por HTLV-I/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Infecções por HTLV-I/genética , Infecções por HTLV-I/virologia , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/virologia , Proteólise , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética
7.
Biochem Biophys Res Commun ; 485(1): 144-151, 2017 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-28189691

RESUMO

Iron is an essential nutrient for normal cell growth, and reprogramming of iron metabolism is essential to tumor cell survival and progression. HTLV-1-associated adult T-cell leukemia/lymphoma (ATLL) has no effective therapy and high levels of cell surface transferrin receptor 1 (TFR1) expression have been reported in ATLL by us and other groups. In this study, to develop a novel molecular-targeted therapy against TFR1 to modulate iron metabolism, we initially determined the expression pattern of several iron-related genes along with TFR1 and found that ATLL cells presented characteristic of an iron-deficiency state such as high expression of iron-regulatory protein 2 (IRP2) and low expression of its E3 ubiquitin-ligase, FBXL5. Therefore, we developed human IgG monoclonal antibodies to human TFR1 using a phage display method (ICOS method) to block the incorporation of the transferrin (TF)-iron complex into ATLL cells for inhibiting cell growth. One of the mAbs, JST-TFR09, presented its greater affinity to TFR1 on ATLL cells in flow cytometry (FCM) analysis than those of commercially available anti-TFR1 antibodies and identified high expression of TFR1 in most of the acute-type ATLL cells. Moreover, JST-TFR09 could interfere with binding between TFR1 and TF, which resulted in effective blockade of TFR1 internalization and induction of cell apoptosis by the treatment of ATLL cells with JST-TFR09. JST-TFR09 showed dual activities through direct cell cytotoxicity and antibody-dependent cellular cytotoxicity (ADCC), and the treatment of JST-TFR09 significantly suppressed cell growth of ATLL cells with induction of apoptosis in in vitro and in vivo experiments. Thus, JST-TFR09 described here may become a promising therapeutic antibody for the treatment of ATLL.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD/imunologia , Imunoglobulina G/imunologia , Leucemia-Linfoma de Células T do Adulto/imunologia , Receptores da Transferrina/imunologia , Adulto , Anticorpos Monoclonais/farmacologia , Antígenos CD/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Leucêmica da Expressão Gênica , Humanos , Imunoglobulina G/farmacologia , Imunoterapia , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/patologia , Leucemia-Linfoma de Células T do Adulto/terapia , Receptores da Transferrina/genética , Regulação para Cima
8.
Exp Cell Res ; 345(2): 150-7, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26103139

RESUMO

Mouse embryo fibroblasts (MEFs) grow slowly after cultivation from animals, however, after an extended period of cultivation, their growth accelerates. We found that SWAP-70 deficient MEFs failed to increase growth rates. They maintain normal growth rates and proliferation cycles for at least 5 years. Complementing SWAP-70 deficiency in one of these MEF clones, MEF1F2, by expressing human SWAP-70 resulted in fast growth of the cells after further cultivation for a long period. The resulting cells show a transformation phenotype, since they grow on top of each other and do not show contact inhibition. This phenotype was reverted when sanguinarine, a putative SWAP-70 inhibitor, was added. Two SWAP-70 expressing clones were examined in detail. Even after cell density became very high their cdc2 and NFκB were still activated suggesting that they do not stop growing. One of the clones formed colonies in soft agar and formed tumors in nude mice. Lately, one more clone became transformed being able to make colonies in soft agar. We maintain 4 human SWAP-70 expressing MEF1F2 cell lines. Three out of 4 clones exhibited transforming phenotypes. The mouse SWAP-70 gene also promoted transformation of MEFs. Taken together our data suggest that SWAP-70 is not a typical oncogene, but is required for spontaneous transformation of MEFs.


Assuntos
Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Nucleares/metabolismo , Benzofenantridinas/farmacologia , Proteína Quinase CDC2/metabolismo , Linhagem Celular , DNA Complementar/genética , Proteínas de Ligação a DNA/deficiência , Fibroblastos/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/deficiência , Humanos , Isoquinolinas/farmacologia , NF-kappa B/metabolismo , Proteínas Nucleares/deficiência , Fenótipo , Fatores de Tempo
10.
Front Oncol ; 13: 1272528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38344143

RESUMO

Adult T-cell leukemia/lymphoma (ATL) is an aggressive T-cell neoplasia associated with human T-cell leukemia virus type 1 (HTLV-1) infection and has an extremely poor prognosis. Lenalidomide (LEN; a second-generation immunomodulatory drug [IMiD]) has been employed as an additional therapeutic option for ATL since 2017, but its mechanism of action has not been fully proven, and recent studies reported emerging concerns about the development of second primary malignancies in patients treated with long-term IMiD therapy. Our purpose in this study was to elucidate the IMiD-mediated anti-ATL mechanisms. Thirteen ATL-related cell lines were divided into LEN-sensitive or LEN-resistant groups. CRBN knockdown (KD) led to a loss of LEN efficacy and IKZF2-KD-induced LEN efficacy in resistant cells. DNA microarray analysis demonstrated distinct transcriptional alteration after LEN treatment between LEN-sensitive and LEN-resistant ATL cell lines. Oral treatment of LEN for ATL cell-transplanted severe combined immunodeficiency (SCID) mice also indicated clear suppressive effects on tumor growth. Finally, a novel cereblon modulator (CELMoD), iberdomide (IBE), exhibited a broader and deeper spectrum of growth suppression to ATL cells with efficient IKZF2 degradation, which was not observed in other IMiD treatments. Based on these findings, our study strongly supports the novel therapeutic advantages of IBE against aggressive and relapsed ATL.

11.
Cancer Sci ; 103(4): 782-90, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22320325

RESUMO

The development of oral squamous cell carcinoma (OSCC) is a multistep process that requires the accumulation of genetic alterations. To identify genes responsible for OSCC development, we performed high-density single nucleotide polymorphism array analysis and genome-wide gene expression profiling on OSCC tumors. These analyses indicated that the absent in melanoma 2 (AIM2) gene and the interferon-inducible gene 16 (IFI16) mapped to the hematopoietic interferon-inducible nuclear proteins. The 200-amino-acid repeat gene cluster in the amplified region of chromosome 1q23 is overexpressed in OSCC. Both AIM2 and IFI16 are cytoplasmic double-stranded DNA sensors for innate immunity and act as tumor suppressors in several human cancers. Knockdown of AIM2 or IFI16 in OSCC cells results in the suppression of cell growth and apoptosis, accompanied by the downregulation of nuclear factor kappa-light-chain-enhancer of activated B cells activation. Because all OSCC cell lines have reduced p53 activity, wild-type p53 was introduced in p53-deficient OSCC cells. The expression of wild-type p53 suppressed cell growth and induced apoptosis via suppression of nuclear factor kappa-light-chain-enhancer of activated B cells activity. Finally, the co-expression of AIM2 and IFI16 significantly enhanced cell growth in p53-deficient cells; in contrast, the expression of AIM2 and/or IFI16 in cells bearing wild-type p53 suppressed cell growth. Moreover, AIM2 and IFI16 synergistically enhanced nuclear factor kappa-light-chain-enhancer of activated B cells signaling in p53-deficient cells. Thus, expression of AIM2 and IFI16 may have oncogenic activities in the OSCC cells that have inactivated the p53 system.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Genes p53 , Neoplasias Bucais/metabolismo , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Cromossomos Humanos Par 1 , Proteínas de Ligação a DNA , Amplificação de Genes , Humanos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Fator de Transcrição AP-1/genética
12.
Biochem Biophys Res Commun ; 420(1): 78-83, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22406061

RESUMO

CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-κB) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-κB activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-κB activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNFα)-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-κB transcriptional activity in RASMCs; however, did not affect the TNFα-induced NF-κB activity. Intriguingly, the TNFα-induced IκB phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of IκBα and IκBß proteins, it did not alter the kinetics of TNFα-induced IκB protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-κB activity and TNFα-induced IκB kinase activation without affecting TNFα-induced NF-κB activity in VSMCs. In addition, knocking down of Cyld suppressed TNFα-induced activation of mitogen activated protein kinases (MAPKs) including extracellular signal-activated kinases (ERK), c-Jun N-terminal kinase (JNK), and p38 in RASMCs. TNFα-induced RASMC migration and monocyte adhesion to RASMCs were inhibited by the Cyld knockdown. Finally, immunochemical staining revealed a dramatic augment of CYLD expression in the injured coronary artery with neointimal hyperplasia. Taken together, our results uncover an unexpected role of CYLD in promoting inflammatory responses in VSMCs via a mechanism involving MAPK activation but independent of NF-κB activity, contributing to the pathogenesis of vascular disease.


Assuntos
Arterite/enzimologia , Cisteína Endopeptidases/fisiologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Animais , Arterite/patologia , Adesão Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Vasos Coronários/enzimologia , Vasos Coronários/patologia , Cisteína Endopeptidases/genética , Enzima Desubiquitinante CYLD , Técnicas de Silenciamento de Genes , Hiperplasia/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Monócitos/enzimologia , Monócitos/fisiologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , NF-kappa B/metabolismo , Neointima/enzimologia , Neointima/patologia , Ribonuclease Pancreático/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima
13.
Anticancer Res ; 42(10): 4743-4752, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36191988

RESUMO

BACKGROUND/AIM: Acute myeloid leukemia (AML) with high expression of the oncogenic transcription factor ecotropic viral integration site-1 (EVI1) (EVI1high AML) is refractory, and there is an urgent need to develop treatment for EVI1high AML. We previously showed that calcitonin receptor-like receptor (CRLR)/receptor activity modifying protein 1 (RAMP1) is highly expressed in EVI1high AML and participates in calcitonin gene-related peptide (CGRP)-induced stress hematopoiesis. This study examined whether MK0974 (a CGRP antagonist) acts as a therapeutic agent in CRLR/RAMP1high AML cell lines. MATERIALS AND METHODS: An in vitro experimental system was used to determine the effect of MK0974 on EVI1high AML cell lines. The expression of CRLR and RAMP1-3 in EVI1high and EVI1low AML lines was evaluated by reverse-transcription polymerase chain reaction (RT-PCR). Next, MK0974 was added to the AML cell lines, and cell proliferation, cell cycle and apoptosis assays were carried out using flow cytometry (FCM). Proteins were evaluated using western blot analysis. We also generated AML cell lines with CRLR knockdown and evaluated whether the effect of MK0974 was reduced. RESULTS: Apoptosis was induced by adding MK0974 to the EVI1high AML cell line. In the EVI1high AML cell line, the addition of MK0974 attenuated the phosphorylation of ERK and p38. These effects were also attenuated by CRLR knockdown. CONCLUSION: MK0974, a CGRP receptor antagonist, inhibits the CRLR/RAMP1 complex and induces apoptosis, making it a potential therapeutic agent for CRLR/RAMP1high AML.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Leucemia Mieloide Aguda , Apoptose , Azepinas , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Proteína Semelhante a Receptor de Calcitonina , Humanos , Imidazóis , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteína 1 Modificadora da Atividade de Receptores , Receptores da Calcitonina/metabolismo , Fatores de Transcrição/genética
14.
Anticancer Res ; 42(4): 1763-1775, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35346995

RESUMO

BACKGROUND/AIM: Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancers worldwide, with a poor prognosis. Owing to the difficulty of early diagnosis, the aim of this study was to isolate biomarkers from extracellular vesicles (EVs) that can lead to early diagnosis. MATERIALS AND METHODS: EVs in the culture supernatant were isolated from a pancreatic cancer cell line (PK-1) and expanded by using two-dimensional gel electrophoresis, and protein identification from each spot was performed by using matrix-assisted laser desorption ionization mass spectrometry. The identified proteins were classified and compared with previously reported results for EVs from murine pancreatic cancer PAN02 cells, and their expression specificity was examined using PDAC cell lines and patient-derived PDAC tissues. In addition, the significance of selected biomarker(s) was examined based on the changes in biomarkers in the blood EVs of PDAC patients after surgery. RESULTS: We found that the ITGA6A splice variant was predominantly expressed in several pancreatic cancer cell lines and blood EVs from patients with PDAC, whereas the ITGA6B splice variant was predominantly expressed in EVs from the blood of normal volunteers. In the expression pattern of ITGA6 in EVs from blood samples of two PDAC patients before and after resection surgery, the expression of ITGA6A in EVs significantly decreased after surgery and increased several months before clinical recurrence. Furthermore, the increased expression of ITGA6A in EVs occurred much earlier than that of CA19-9. CONCLUSION: Determination of ITGA6A expression in blood EVs in PDAC patients could be a useful blood marker for the early diagnosis of PDAC recurrence.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Integrina alfa6 , Neoplasias Pancreáticas , Animais , Antígeno CA-19-9 , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Vesículas Extracelulares/genética , Humanos , Integrina alfa6/genética , Camundongos , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética
15.
Exp Hematol ; 111: 41-49, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35421541

RESUMO

B-Cell leukemia/lymphoma 11B (BCL11B) is a transcription factor important for T-cell development and acts as a tumor suppressor gene in T-cell acute lymphoblastic leukemia. Here, we identified BCL11B as a candidate leukemia-associated gene in human T-cell leukemia virus type 1 (HTLV-1)-induced adult T-cell leukemia/lymphoma (ATLL). Interestingly, the short form lacking exon 3 (BCL11B/S) protein was more highly expressed than the full-length BCL11B (BCL11B/L) in leukemic cells from most of the ATLL patients, although expression ratios of BCL11B/L to BCL11B/S were almost equal in control CD4+ T cells. BCL11B/S and BCL11B/L exhibited distinct subcellular localization and differential effects on cellular growth; BCL11B/L expression exhibited nuclear localization and inhibited cell growth in ATLL cells, whereas BCL11B/S exhibited nucleocytoplasmic distribution and accelerated cell growth. Furthermore, BCL11B/S expression accelerated the development of T-cell leukemia/lymphomas in transgenic mice carrying HTLV-1/HBZ, a critical viral factor in leukemogenesis, whereas these phenotypes did not occur in the double transgenic mice carrying BCL11B/L and HTLV-1/HBZ. In HTLV-1-infected T-cell lines, BCL11B expression is downregulated by HTLV-1/Tax, a viral factor necessary at the early stage of leukemogenesis. These results suggest that downregulation of BCL11B/L expression and upregulation of BCL11B/S may contribute to the development and progression of ATLL.


Assuntos
Leucemia-Linfoma de Células T do Adulto , Proteínas Repressoras , Proteínas Supressoras de Tumor , Animais , Carcinogênese/genética , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Genes Supressores de Tumor , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/virologia , Camundongos , Isoformas de Proteínas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
16.
PLoS One ; 16(8): e0256320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34407152

RESUMO

Adult T-cell leukemia/lymphoma (ATLL) originates from human T-cell leukemia virus type 1 (HTLV-1) infection due to the activation of the nuclear factor-κB (NF-κB) signaling pathway to maintain proliferation and survival. An important mechanism of the activated NF-κB signaling pathway in ATLL is the activation of the macroautophagy (herafter referred to as autophagy in the remainder of this manuscript)-lysosomal degradation of p47 (NSFL1C), a negative regulator of the NF-κB pathway. Therefore, we considered the use of chloroquine (CQ) or hydroxychloroquine (HCQ) (CQ/HCQ) as an autophagy inhibitor to treat ATLL; these drugs were originally approved by the FDA as antimalarial drugs and have recently been used to treat autoimmune diseases, such as systemic lupus erythematosus (SLE). In this paper, we determined the therapeutic efficacy of CQ/HCQ, as NF-κB inhibitors, in ATLL mediated by blockade of p47 degradation. Administration of CQ/HCQ to ATLL cell lines and primary ATLL cells induced cell growth inhibition in a dose-dependent manner, and the majority of cells underwent apoptosis after CQ administration. As to the molecular mechanism, autophagy was inhibited in CQ-treated ATLL cells, and activation of the NF-κB pathway was suppressed with the restoration of the p47 level. When the antitumor effect of CQ/HCQ was examined using immunodeficient mice transplanted with ATLL cell lines, CQ/HCQ significantly suppressed tumor growth and improved the survival rate in the ATLL xenograft mouse model. Importantly, HCQ selectively induced ATLL cell death in the ATLL xenograft mouse model at the dose used to treat SLE. Taken together, our results suggest that the inhibition of autophagy by CQ/HCQ may become a novel and effective strategy for the treatment of ATLL.


Assuntos
Cloroquina/farmacologia , Hidroxicloroquina/farmacologia , Fatores Imunológicos/farmacologia , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , NF-kappa B/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Animais , Apoptose , Autofagia , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica , Vírus Linfotrópico T Tipo 1 Humano/crescimento & desenvolvimento , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Leucemia-Linfoma de Células T do Adulto/imunologia , Leucemia-Linfoma de Células T do Adulto/mortalidade , Leucemia-Linfoma de Células T do Adulto/virologia , Masculino , Camundongos , Camundongos SCID , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , Cultura Primária de Células , Transdução de Sinais/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/imunologia , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biochem Biophys Res Commun ; 391(1): 852-6, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19945429

RESUMO

Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNFalpha)-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNFalpha-induced activation of ERK and DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNFalpha hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.


Assuntos
Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Células Cultivadas , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Biossíntese de Proteínas , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina Tiolesterase/genética , Vasculite/enzimologia
18.
Arterioscler Thromb Vasc Biol ; 29(11): 1843-50, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19592468

RESUMO

BACKGROUND: Reactive oxygen species (ROS) play an important role in the maintenance of cardiovascular homeostasis. The present study sought to determine whether nuclear factor erythroid-2 related factor 2 (Nrf2), a master gene of the endogenous antioxidant defense system, is a critical regulator of the cardiac hypertrophic response to pathological stress. METHODS AND RESULTS: Cardiac hypertrophy and dysfunction were established in mice by transverse aortic constriction (TAC). Nrf2 expression was transiently increased and then declined to the basal level while impairment of cardiac function proceeded. The knockout of Nrf2 (Nrf2(-/-)) did not cause any apparent structural and functional abnormalities in the unstressed heart. However, Nrf2(-/-) mice after TAC developed pathological cardiac hypertrophy, significant myocardial fibrosis and apoptosis, overt heart failure, and increased mortality, which were associated with elevated myocardial levels of 4-hydroxy-2-nonenal and 8-hydroxydeoxyguanosine and a complete blockade of the myocardial expression of several antioxidant genes. Overexpression of Nrf2 dramatically inhibited hypertrophic factor-induced ROS production and growth in both cardiomyocytes and cardiac fibroblasts, whereas knockdown of Nrf2 exerted opposite effects in both cells. CONCLUSIONS: These findings demonstrate that activation of Nrf2 provides a novel mechanism to protect the murine heart against pathological cardiac hypertrophy and heart failure via suppressing oxidative stress.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Remodelação Ventricular/fisiologia , Animais , Apoptose/genética , Apoptose/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Hemodinâmica , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Probabilidade , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Valores de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Transdução de Sinais , Regulação para Cima
19.
Int J Hematol ; 112(4): 496-503, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32656636

RESUMO

Adult T-cell leukemia/lymphoma (ATLL) is a highly invasive and refractory T-cell malignancy, with poor prognosis. We previously identified that cell adhesion molecule 1 (CADM1) is overexpressed consistently in ATLL cells, and that CADM1 expression increases the adhesion capacity of ATLL cells to endothelial cells and promotes the organ invasion of ATLL cells in a xenograft mouse model. In this study, we first show that newly developed several anti-human CADM1 antibodies, which were complete human IgG antibodies generated by phage display method, specifically recognize CADM1 on ATLL cells. Although most of the CADM1 antibodies did not have a direct cytotoxic effect against CADM1-positive ATLL cells, clone 089-084 exhibited weak but significant antibody-dependent cell-mediated cytotoxic activity. Moreover, clone 103-189 effectively inhibits the interaction between endothelial cells and CADM1-positive ATLL cells. Furthermore, in mice bearing intra-splenic transplantation of EL4 mouse lymphoma cells expressing CADM1, the treatment of 103-189 significantly suppressed the organ invasion of CADM1-positive EL4 cells, resulting in improved survival time of mice. Therefore, since the anti-CADM1 antibody may be useful for the suppression of organ invasion in ATLL patients, combination use of the anti-CADM1 antibody with chemotherapy drugs could be beneficial for the efficient elimination of ATLL cells.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Molécula 1 de Adesão Celular/genética , Molécula 1 de Adesão Celular/imunologia , Desenvolvimento de Medicamentos/métodos , Expressão Gênica/efeitos dos fármacos , Imunoglobulina G/uso terapêutico , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/genética , Animais , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Molécula 1 de Adesão Celular/metabolismo , Técnicas de Visualização da Superfície Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoglobulina G/farmacologia , Leucemia-Linfoma de Células T do Adulto/patologia , Masculino , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas
20.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118615, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31765670

RESUMO

N-myc downstream-regulated gene 2 (NDRG2) as a tumor suppressor is frequently downregulated in human T-lymphotropic retrovirus (HTLV-1)-infected adult T-cell leukemia (ATL) and variety of cancers, and negatively regulates PI3K signaling pathways through dephosphorylation of PTEN with protein phosphatase 2A (PP2A). We recently identified that protein arginine methyltransferase 5 (PRMT5) is one of novel NDRG2 binding proteins and the knockdown of PRMT5 induces cell apoptosis with degradation of several signaling molecules. To investigate how the apoptosis is induced by the knockdown PRMT5 expression, heat shock protein 90 alpha (HSP90A) was identified as a binding protein for NDRG2 or PRMT5 by immunoprecipitation-mass analysis. NDRG2/PP2A complex inhibited arginine methyltransferase activity of PRMT5 through dephosphorylation at Serine 335 (S335); however, in NDRG2low ATL-related cells, highly phosphorylated PRMT5 at S335 was mainly localized in cytoplasm with binding to HSP90A, resulting in enhancing arginine-methylation at the middle domain (R345 and R386). Since knockdown of PRMT5 expression or forced expression of HSP90A with alanine replacement of R345 or R386 induced apoptosis with the degradation of client proteins in NDRG2low ATL-related and other cancer cells, we here identified that the novel arginine methylations of HSP90A are essential for maintenance of its function in NDRG2low ATL and other cancer cells.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Arginina/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Humanos , Leucemia-Linfoma de Células T do Adulto/metabolismo , Leucemia-Linfoma de Células T do Adulto/patologia , Metilação , Fosforilação , Ligação Proteica , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteólise , Interferência de RNA , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA