Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Hum Genomics ; 18(1): 78, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987819

RESUMO

Pharmacogenetics investigates sequence of genes that affect drug response, enabling personalized medication. This approach reduces drug-induced adverse reactions and improves clinical effectiveness, making it a crucial consideration for personalized medical care. Numerous guidelines, drawn by global consortia and scientific organizations, codify genotype-driven administration for over 120 active substances. As the scientific community acknowledges the benefits of genotype-tailored therapy over traditionally agnostic drug administration, the push for its implementation into Italian healthcare system is gaining momentum. This evolution is influenced by several factors, including the improved access to patient genotypes, the sequencing costs decrease, the growing of large-scale genetic studies, the rising popularity of direct-to-consumer pharmacogenetic tests, and the continuous improvement of pharmacogenetic guidelines. Since EMA (European Medicines Agency) and AIFA (Italian Medicines Agency) provide genotype information on drug leaflet without clear and explicit clinical indications for gene testing, the regulation of pharmacogenetic testing is a pressing matter in Italy. In this manuscript, we have reviewed how to overcome the obstacles in implementing pharmacogenetic testing in the clinical practice of the Italian healthcare system. Our particular emphasis has been on germline testing, given the absence of well-defined national directives in contrast to somatic pharmacogenetics.


Assuntos
Farmacogenética , Humanos , Itália , Farmacogenética/métodos , Farmacogenética/tendências , Medicina de Precisão/tendências , Medicina de Precisão/métodos , Testes Farmacogenômicos/métodos , Genótipo
2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834376

RESUMO

Cardiovascular diseases (CVD) display many sex and gender differences, and endothelial dysfunction, angiotensin II (Ang II), and autophagy represent key factors in the autophagic process Therefore, we studied whether Ang II modulates the mentioned processes in a sex-specific way in HUVECs obtained from healthy male and female newborns. In basal HUVECs, the Parkin gene and protein were higher in FHUVECs than in MHUVECs, while the Beclin-1 protein was more expressed in MHUVECs, and no other significant differences were detected. Ang II significantly increases LAMP-1 and p62 protein expression and decreases the expression of Parkin protein in comparison to basal in MHUVECs. In FHUVECs, Ang II significantly increases the expression of Beclin-1 gene and protein, and Parkin gene. The LC3 II/I ratio and LAMP-1 protein were significantly higher in MHUVECs than in FHUVECs, while Parkin protein was significantly more expressed in Ang II-treated FHUVECs than in male cells. Ang II affects the single miRNA levels: miR-126-3p and miR-133a-3p are downregulated and upregulated in MHUVECs and FHUVECs, respectively. MiR-223 is downregulated in MHUVEC and FHUVECs. Finally, miR-29b-3p and miR-133b are not affected by Ang II. Ang II effects and the relationship between miRNAs and organelles-specific autophagy is sex-dependent in HUVECs. This could lead to a better understanding of the mechanisms underlying sex differences in endothelial dysfunction, providing useful indications for innovative biomarkers and personalized therapeutic approaches.


Assuntos
MicroRNAs , Recém-Nascido , Humanos , Feminino , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Autofagia/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
J Neurol Neurosurg Psychiatry ; 93(9): 986-994, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688629

RESUMO

Studies among people with multiple sclerosis (pwMS) receiving disease-modifying therapies (DMTs) have provided adequate evidence for an appraisal of COVID-19 vaccination policies among them. To synthesise the available evidence addressing the effect of MS DMTs on COVID-19 vaccines' immunogenicity and effectiveness, following the Cochrane guidelines, we systematically reviewed all observational studies available in MEDLINE, Scopus, Web of Science, MedRxiv and Google Scholar from January 2021 to January 2022 and extracted their relevant data. Immunogenicity data were then synthesised in a quantitative, and other data in a qualitative manner. Evidence from 28 studies suggests extensively lower B-cell responses in sphingosine-1-phosphate receptor modulator (S1PRM) treated and anti-CD20 (aCD20) treated, and lower T-cell responses in interferon-treated, S1PRM-treated and cladribine-treated pwMS-although most T cell evidence currently comprises of low or very low certainty. With every 10-week increase in aCD20-to-vaccine period, a 1.94-fold (95% CI 1.57 to 2.41, p<0.00001) increase in the odds of seroconversion was observed. Furthermore, the evidence points out that B-cell-depleting therapies may accelerate postvaccination humoral waning, and boosters' immunogenicity is predictable with the same factors affecting the initial vaccination cycle. Four real-world studies further indicate that the comparative incidence/severity of breakthrough COVID-19 has been higher among the pwMS treated with S1PRM and aCD20-unlike the ones treated with other DMTs. S1PRM and aCD20 therapies were the only DMTs reducing the real-world effectiveness of COVID-19 vaccination among pwMS. Hence, it could be concluded that optimisation of humoral immunogenicity and ensuring its durability are the necessities of an effective COVID-19 vaccination policy among pwMS who receive DMTs.


Assuntos
COVID-19 , Esclerose Múltipla , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Cladribina , Humanos , Fatores Imunológicos , Esclerose Múltipla/tratamento farmacológico
4.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077453

RESUMO

Pharmacogenetics (PGx) aims to identify the genetic factors that determine inter-individual differences in response to drug treatment maximizing efficacy while decreasing the risk of adverse events. Estimating the prevalence of PGx variants involved in drug response, is a critical preparatory step for large-scale implementation of a personalized medicine program in a target population. Here, we profiled pharmacogenetic variation in fourteen clinically relevant genes in a representative sample set of 1577 unrelated sequenced Sardinians, an ancient island population that accounts for genetic variation in Europe as a whole, and, at the same time is enriched in genetic variants that are very rare elsewhere. To this end, we used PGxPOP, a PGx allele caller based on the guidelines created by the Clinical Pharmacogenetics Implementation Consortium (CPIC), to identify the main phenotypes associated with the PGx alleles most represented in Sardinians. We estimated that 99.43% of Sardinian individuals might potentially respond atypically to at least one drug, that on average each individual is expected to have an abnormal response to about 17 drugs, and that for 27 drugs the fraction of the population at risk of atypical responses to therapy is more than 40%. Finally, we identified 174 pharmacogenetic variants for which the minor allele frequency was at least 10% higher among Sardinians as compared to other European populations, a fact that may contribute to substantial interpopulation variability in drug response phenotypes. This study provides baseline information for further large-scale pharmacogenomic investigations in the Sardinian population and underlines the importance of PGx characterization of diverse European populations, such as Sardinians.


Assuntos
Farmacogenética , Medicina de Precisão , Frequência do Gene , Variação Genética , Testes Farmacogenômicos , Variantes Farmacogenômicos
5.
Front Immunol ; 15: 1416464, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076966

RESUMO

Introduction: Disease-modifying therapies (DMTs) have been shown to improve disease outcomes in multiple sclerosis (MS) patients. They may also impair the immune response to vaccines, including the SARS-CoV-2 vaccine. However, available data on both the intrinsic immune effects of DMTs and their influence on cellular response to the SARS-CoV-2 vaccine are still incomplete. Methods: Here, we evaluated the immune cell effects of 3 DMTs on the response to mRNA SARS-CoV-2 vaccination by comparing MS patients treated with one specific therapy (fingolimod, dimethyl fumarate, or natalizumab) with both healthy controls and untreated patients. We profiled 23 B-cell traits, 57 T-cell traits, and 10 cytokines, both at basal level and after stimulation with a pool of SARS-CoV-2 spike peptides, in 79 MS patients, treated with DMTs or untreated, and 32 healthy controls. Measurements were made before vaccination and at three time points after immunization. Results and Discussion: MS patients treated with fingolimod showed the strongest immune cell dysregulation characterized by a reduction in all measured lymphocyte cell classes; the patients also had increased immune cell activation at baseline, accompanied by reduced specific immune cell response to the SARS-CoV-2 vaccine. Also, anti-spike specific B cells progressively increased over the three time points after vaccination, even when antibodies measured from the same samples instead showed a decline. Our findings demonstrate that repeated booster vaccinations in MS patients are crucial to overcoming the immune cell impairment caused by DMTs and achieving an immune response to the SARS-CoV-2 vaccine comparable to that of healthy controls.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Fumarato de Dimetilo , Cloridrato de Fingolimode , Esclerose Múltipla , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , Masculino , Esclerose Múltipla/imunologia , Esclerose Múltipla/tratamento farmacológico , Feminino , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Pessoa de Meia-Idade , Adulto , Cloridrato de Fingolimode/uso terapêutico , Cloridrato de Fingolimode/farmacologia , Fumarato de Dimetilo/uso terapêutico , Fumarato de Dimetilo/farmacologia , Imunossupressores/uso terapêutico , Natalizumab/uso terapêutico , Linfócitos B/imunologia , Vacinação , Linfócitos T/imunologia , Citocinas/metabolismo
6.
Wiley Interdiscip Rev RNA ; 14(4): e1772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36658783

RESUMO

Autoimmune diseases (ADs) are chronic pathologies generated by the loss of immune tolerance to the body's own cells and tissues. There is growing recognition that RNA-binding proteins (RBPs) critically govern immunity in healthy and pathological conditions by modulating gene expression post-transcriptionally at all levels: nuclear mRNA splicing and modification, export to the cytoplasm, as well as cytoplasmic mRNA transport, storage, editing, stability, and translation. Despite enormous efforts to identify new therapies for ADs, definitive solutions are not yet available in many instances. Recognizing that many ADs have a strong genetic component, we have explored connections between the molecular biology and the genetics of RBPs in ADs. Here, we review the genetics and molecular biology of RBPs in four major ADs, multiple sclerosis (MS), type 1 diabetes mellitus (T1D), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). We anticipate that gaining insights into the genetics and biology of ADs can facilitate the discovery of new therapies. This article is categorized under: RNA in Disease and Development > RNA in Disease.


Assuntos
Doenças Autoimunes , Autoimunidade , Humanos , Autoimunidade/genética , Doenças Autoimunes/genética , RNA , Proteínas de Ligação a RNA/genética , Biologia Molecular , RNA Mensageiro
7.
Biomedicines ; 11(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37893203

RESUMO

Amniotic fluid is essential for fetus wellbeing and is used to monitor pregnancy and predict fetal outcomes. Sex affects health and medicine from the beginning of life, but knowledge of its influence on cell-depleted amniotic fluid (AF) and amniotic fluid cells (AFCs) is still neglected. We evaluated sex-related differences in AF and in AFCs to extend personalized medicine to prenatal life. AFCs and AF were obtained from healthy Caucasian pregnant women who underwent amniocentesis at the 16th-18th week of gestation for advanced maternal age. In the AF, inflammation biomarkers (TNFα, IL6, IL8, and IL4), malondialdehyde, nitrites, amino acids, and acylcarnitines were measured. Estrogen receptors and cell fate (autophagy, apoptosis, senescence) were measured in AFCs. TNFα, IL8, and IL4 were higher in female AF, whereas IL6, nitrites, and MDA were similar. Valine was higher in male AF, whereas several acylcarnitines were sexually different, suggesting a mitochondrial involvement in establishing sex differences. Female AFCs displayed higher expression of ERα protein and a higher ERα/ERß ratio. The ratio of LC3II/I, an index of autophagy, was higher in female AFCs, while LC3 gene was similar in both sexes. No significant sex differences were found in the expression of the lysosomal protein LAMP1, while p62 was higher in male AFCs. LAMP1 gene was upregulated in male AFCs, while p62 gene was upregulated in female ones. Finally, caspase 9 activity and senescence linked to telomeres were higher in female AFCs, while caspase 3 and ß-galactosidase activities were similar. This study supports the idea that sex differences start very early in prenatal life and influence specific parameters, suggesting that it may be relevant to appreciate sex differences to cover knowledge gaps. This might lead to improving the diagnosis of risk prediction for pregnancy complications and achieving a more satisfactory monitoring of fetus health, even preventing future diseases in adulthood.

8.
Elife ; 122023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083495

RESUMO

Senescent cells release a variety of cytokines, proteases, and growth factors collectively known as the senescence-associated secretory phenotype (SASP). Sustained SASP contributes to a pattern of chronic inflammation associated with aging and implicated in many age-related diseases. Here, we investigated the expression and function of the immunomodulatory cytokine BAFF (B-cell activating factor; encoded by the TNFSF13B gene), a SASP protein, in multiple senescence models. We first characterized BAFF production across different senescence paradigms, including senescent human diploid fibroblasts (WI-38, IMR-90) and monocytic leukemia cells (THP-1), and tissues of mice induced to undergo senescence. We then identified IRF1 (interferon regulatory factor 1) as a transcription factor required for promoting TNFSF13B mRNA transcription in senescence. We discovered that suppressing BAFF production decreased the senescent phenotype of both fibroblasts and monocyte-like cells, reducing IL6 secretion and SA-ß-Gal staining. Importantly, however, the influence of BAFF on the senescence program was cell type-specific: in monocytes, BAFF promoted the early activation of NF-κB and general SASP secretion, while in fibroblasts, BAFF contributed to the production and function of TP53 (p53). We propose that BAFF is elevated across senescence models and is a potential target for senotherapy.


Assuntos
Fator Ativador de Células B , Senescência Celular , Humanos , Animais , Camundongos , Senescência Celular/genética , Fator Ativador de Células B/genética , Fator Ativador de Células B/metabolismo , Fator Ativador de Células B/farmacologia , Secretoma , Envelhecimento/genética , Citocinas/metabolismo
9.
Viruses ; 15(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851491

RESUMO

Understanding how geography and human mobility shape the patterns and spread of infectious diseases such as COVID-19 is key to control future epidemics. An interesting example is provided by the second wave of the COVID-19 epidemic in Europe, which was facilitated by the intense movement of tourists around the Mediterranean coast in summer 2020. The Italian island of Sardinia is a major tourist destination and is widely believed to be the origin of the second Italian wave. In this study, we characterize the genetic variation among SARS-CoV-2 strains circulating in northern Sardinia during the first and second Italian waves using both Illumina and Oxford Nanopore Technologies Next Generation Sequencing methods. Most viruses were placed into a single clade, implying that despite substantial virus inflow, most outbreaks did not spread widely. The second epidemic wave on the island was actually driven by local transmission of a single B.1.177 subclade. Phylogeographic analyses further suggest that those viral strains circulating on the island were not a relevant source for the second epidemic wave in Italy. This result, however, does not rule out the possibility of intense mixing and transmission of the virus among tourists as a major contributor to the second Italian wave.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Epidemiologia Molecular , Itália/epidemiologia , Filogeografia , Variação Genética
10.
Wiley Interdiscip Rev RNA ; 13(3): e1697, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34651456

RESUMO

Malaria is one of the most severe infectious diseases affecting humans and it is caused by protozoan pathogens of the species Plasmodium (spp.). The malaria parasite Plasmodium is characterized by a complex, multistage life cycle that requires tight gene regulation which allows for host invasion and defense against host immune responses. Unfortunately, the mechanisms regulating gene expression during Plasmodium infection remain largely elusive, though several lines of evidence implicate a major involvement of non-coding RNAs (ncRNAs). The ncRNAs have been found to play a key role in regulating transcriptional and post-transcriptional events in a broad range of organisms including Plasmodium. In Plasmodium ncRNAs have been shown to regulate key events in the multistage life cycle and virulence ability. Here we review recent progress involving ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) and their role as regulators of gene expression during Plasmodium infection in human hosts with focus on the possibility of using these molecules as biomarkers for monitoring disease status. We also discuss the surprising function of ncRNAs in mediating the complex interplay between parasite and human host and future perspectives of the field. This article is categorized under: RNA in Disease and Development > RNA in Disease.


Assuntos
Malária , MicroRNAs , RNA Longo não Codificante , Regulação da Expressão Gênica , Humanos , Malária/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA