Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Neurosci Res ; 102(1): e25257, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814998

RESUMO

Noncompetitive NMDA receptor (NMDAR) antagonists like phencyclidine (PCP) and ketamine cause psychosis-like symptoms in healthy humans, exacerbate schizophrenia symptoms in people with the disorder, and disrupt a range of schizophrenia-relevant behaviors in rodents, including hyperlocomotion. This is negated in mice lacking the GluN2D subunit of the NMDAR, suggesting the GluN2D subunit mediates the hyperlocomotor effects of these drugs. However, the role of GluN2D in mediating other schizophrenia-relevant NMDAR antagonist-induced behavioral disturbances, and in both sexes, is unclear. This study aimed to investigate the role of the GluN2D subunit in mediating schizophrenia-relevant behaviors induced by a range of NMDA receptor antagonists. Using both male and female GluN2D knockout (KO) mice, we examined the effects of the NMDAR antagonist's PCP, the S-ketamine enantiomer (S-ket), and the ketamine metabolite R-norketamine (R-norket) on locomotor activity, anxiety-related behavior, and recognition and short-term spatial memory. GluN2D-KO mice showed a blunted locomotor response to R-norket, S-ket, and PCP, a phenotype present in both sexes. GluN2D-KO mice of both sexes showed an anxious phenotype and S-ket, R-norket, and PCP showed anxiolytic effects that were dependent on sex and genotype. S-ket disrupted spatial recognition memory in females and novel object recognition memory in both sexes, independent of genotype. This datum identifies a role for the GluN2D subunit in sex-specific effects of NMDAR antagonists and on the differential effects of the R- and S-ket enantiomers.


Assuntos
Ketamina , Animais , Feminino , Humanos , Masculino , Camundongos , Ketamina/farmacologia , Fenciclidina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Reconhecimento Psicológico
2.
J Pharmacol Sci ; 154(3): 203-208, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395521

RESUMO

Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, has attracted attention for its acute and sustained antidepressant effects in patients with depression. Hydroxynorketamine (HNK), a metabolite of ketamine, exerts antidepressant effects without exerting ketamine's side effects and has attracted much attention in recent years. However, the detailed pharmacological mechanism of action of HNK remains unclear. We previously showed that the GluN2D NMDA receptor subunit is important for sustained antidepressant-like effects of (R)-ketamine. Therefore, we investigated whether the GluN2D subunit is involved in antidepressant-like effects of (2R,6R)-HNK and (2S,6S)-HNK. Treatment with (2R,6R)-HNK but not (2S,6S)-HNK exerted acute and sustained antidepressant-like effects in the tail-suspension test in wildtype mice. Interestingly, sustained antidepressant-like effects of (2R,6R)-HNK were abolished in GluN2D-knockout mice, whereas acute antidepressant-like effects were maintained in GluN2D-knockout mice. When expression levels of GluN2A and GluN2B subunits were evaluated, a decrease in GluN2B protein expression in the nucleus accumbens was found in stressed wildtype mice but not in stressed GluN2D-knockout mice. These results suggest that the GluN2D subunit and possibly the GluN2B subunit are involved in the sustained antidepressant-like effect of (2R,6R)-HNK.


Assuntos
Ketamina , Ketamina/análogos & derivados , Humanos , Camundongos , Animais , Ketamina/farmacologia , Ketamina/metabolismo , Depressão/tratamento farmacológico , Depressão/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos Knockout , Antidepressivos/farmacologia
3.
J Pharmacol Sci ; 151(3): 135-141, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36828615

RESUMO

Previous pharmacological data have shown the possible existence of functional interactions between µ- (MOP), κ- (KOP), and δ-opioid receptors (DOP) in pain and mood disorders. We previously reported that MOP knockout (KO) mice exhibit a lower stress response compared with wildtype (WT) mice. Moreover, DOP agonists have been shown to exert antidepressant-like effects in numerous animal models. In the present study, the tail suspension test (TST) and forced swim test (FST) were used to examine the roles of MOP and DOP in behavioral despair. MOP-KO mice and WT mice were treated with KNT-127 (10 mg/kg), a selective DOP agonist. The results indicated a significant decrease in immobility time in the KNT-127 group compared with the saline group in all genotypes in both tests. In the saline groups, immobility time significantly decreased in MOP-KO mice compared with WT mice in both tests. In female MOP-KO mice, KNT-127 significantly decreased immobility time in the TST compared with WT mice. In male MOP-KO mice, however, no genotypic differences were found in the TST after either KNT-127 or saline treatment. Thus, at least in the FST and TST, the activation of DOP and absence of MOP had additive effects in reducing measures of behavioral despair, suggesting that effects on this behavior by DOP activation occur independently of MOP.


Assuntos
Morfinanos , Receptores Opioides mu , Masculino , Feminino , Camundongos , Animais , Morfinanos/farmacologia , Antidepressivos/farmacologia , Analgésicos Opioides/farmacologia , Dor/tratamento farmacológico
4.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834763

RESUMO

Although opioids are widely used to treat moderate to severe pain, opioid addiction and the opioid overdose epidemic are becoming more serious. Although opioid receptor antagonists/partial agonists, such as naltrexone and buprenorphine, have relatively low selectivity for the µ-opioid receptor (MOP), they have been used for the management of opioid use disorder. The utility of highly selective MOP antagonists remains to be evaluated. Here, we biologically and pharmacologically evaluated a novel nonpeptide ligand, UD-030, as a selective MOP antagonist. UD-030 had more than 100-fold higher binding affinity for the human MOP (Ki = 3.1 nM) than for δ-opioid, κ-opioid, and nociceptin receptors (Ki = 1800, 460, and 1800 nM, respectively) in competitive binding assays. The [35S]-GTPγS binding assay showed that UD-030 acts as a selective MOP full antagonist. The oral administration of UD-030 dose-dependently suppressed the acquisition and expression of morphine-induced conditioned place preference in C57BL/6J mice, and its effects were comparable to naltrexone. These results indicate the UD-030 may be a new candidate for the treatment of opioid use disorder, with characteristics that differ from traditional medications that are in clinical use.


Assuntos
Antagonistas de Entorpecentes , Transtornos Relacionados ao Uso de Opioides , Camundongos , Humanos , Animais , Antagonistas de Entorpecentes/farmacologia , Morfina/farmacologia , Naltrexona/farmacologia , Analgésicos Opioides/farmacologia , Receptores Opioides delta/metabolismo , Camundongos Endogâmicos C57BL , Receptores Opioides mu/metabolismo
5.
Int J Neuropsychopharmacol ; 22(7): 449-452, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135879

RESUMO

Although the N-methyl-D-aspartate receptor antagonist ketamine has attracted attention because of its rapid and sustained antidepressant effects in depressed patients, its side effects have raised some concerns. Ketamine is a racemic mixture of equal amounts of the enantiomers (R)-ketamine and (S)-ketamine. The neural mechanisms that underlie the differential effects of these enantiomers remain unclear. We investigated cognitive impairment that was induced by ketamine and its enantiomers in N-methyl-D-aspartate GluN2D receptor subunit knockout (GluN2D-KO) mice. In the novel object recognition test, (RS)-ketamine and (S)-ketamine caused cognitive impairment in both wild-type and GluN2D-KO mice, whereas (R)-ketamine induced such cognitive impairment only in wild-type mice. The present results suggest that the GluN2D subunit plays an important role in cognitive impairment that is induced by (R)-ketamine, whereas this subunit does not appear to be involved in cognitive impairment that is induced by (RS)-ketamine or (S)-ketamine.


Assuntos
Antidepressivos/efeitos adversos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Ketamina/efeitos adversos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Antidepressivos/química , Antidepressivos/farmacologia , Ketamina/química , Ketamina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/genética , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia
6.
Eur J Neurosci ; 47(1): 40-47, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29131433

RESUMO

Pain is a complex experience with both sensory and affective components. Clinical and preclinical studies have shown that the affective component of pain can be reduced by doses of morphine lower than those necessary to reduce the sensory component. Although the neural mechanisms underlying the effects of morphine on the sensory component of pain have been investigated extensively, those influencing the affective component remain to be elucidated. The bed nucleus of the stria terminalis (BNST) has been implicated in the regulation of various negative emotional states, including aversion, anxiety and fear. Thus, this study aimed to clarify the role of the ventral part of the BNST (vBNST) in the actions of morphine on the affective and sensory components of pain. First, the effects of intra-vBNST injections of morphine on intraplantar formalin-induced conditioned place aversion (CPA) and nociceptive behaviors were investigated. Intra-vBNST injections of morphine reduced CPA without affecting nociceptive behaviors, which suggests that intra-vBNST morphine alters the affective, but not sensory, component of pain. Next, to examine the effects of morphine on neuronal excitability in type II vBNST neurons, whole-cell patch-clamp recordings were performed in brain slices. Bath application of morphine hyperpolarized type II vBNST neurons. Thus, the suppressive effects of intra-vBNST morphine on pain-induced aversion may be due to its inhibitory effects on neuronal excitability in type II vBNST neurons. These results suggest that the vBNST is a key brain region involved in the suppressive effects of morphine on the affective component of pain.


Assuntos
Analgésicos Opioides/farmacologia , Condicionamento Clássico , Morfina/farmacologia , Nociceptividade , Dor/fisiopatologia , Núcleos Septais/efeitos dos fármacos , Potenciais de Ação , Animais , Masculino , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Núcleos Septais/citologia
7.
Int J Neuropsychopharmacol ; 20(7): 575-584, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419244

RESUMO

Background: Resolvin D1 and D2 are bioactive lipid mediators that are generated from docosahexaenoic acid. Although recent preclinical studies suggest that these compounds have antidepressant effects, their mechanisms of action remain unclear. Methods: We investigated mechanisms underlying the antidepressant effects of resolvin D1 and resolvin D2 in lipopolysaccharide (0.8 mg/kg, i.p.)-induced depression model mice using a tail suspension test. Results: I.c.v. infusion of resolvin D1 (10 ng) and resolvin D2 (10 ng) produced antidepressant effects; these effects were significantly blocked by a resolvin D1 receptor antagonist WRW4 (10 µg, i.c.v.) and a resolvin D2 receptor antagonist O-1918 (10 µg, i.c.v.), respectively. The mammalian target of rapamycin complex 1 inhibitor rapamycin (10 mg/kg, i.p.) and a mitogen-activated protein kinase kinase inhibitor U0126 (5 µg, i.c.v.) significantly blocked the antidepressant effects of resolvin D1 and resolvin D2. An AMPA receptor antagonist NBQX (10 mg/kg, i.p.) and a phosphoinositide 3-kinase inhibitor LY294002 (3 µg, i.c.v.) blocked the antidepressant effects of resolvin D1 significantly, but not of resolvin D2. Bilateral infusions of resolvin D1 (0.3 ng/side) or resolvin D2 (0.3 ng/side) into the medial prefrontal cortex or dentate gyrus of the hippocampus produced antidepressant effects. Conclusions: These findings demonstrate that resolvin D1 and resolvin D2 produce antidepressant effects via the mammalian target of rapamycin complex 1 signaling pathway, and that the medial prefrontal cortex and dentate gyrus are important brain regions for these antidepressant effects. These compounds and their receptors may be promising targets for the development of novel rapid-acting antidepressants, like ketamine and scopolamine.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressão/induzido quimicamente , Modelos Animais de Doenças , Elevação dos Membros Posteriores/métodos , Resposta de Imobilidade Tônica/efeitos dos fármacos , Injeções Intraventriculares , Lipopolissacarídeos/toxicidade , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oligopeptídeos/farmacologia , Estatísticas não Paramétricas
8.
Int J Neuropsychopharmacol ; 20(5): 403-409, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031268

RESUMO

Background: Opioid and dopamine systems play crucial roles in reward. Similarities and differences in the neural mechanisms of reward that are mediated by these 2 systems have remained largely unknown. Thus, in the present study, we investigated the differences in reward function in both µ-opioid receptor knockout mice and dopamine transporter knockout mice, important molecules in the opioid and dopamine systems. Methods: Mice were implanted with electrodes into the right lateral hypothalamus (l hour). Mice were then trained to put their muzzle into the hole in the head-dipping chamber for intracranial electrical stimulation, and the influences of gene knockout were assessed. Results: Significant differences are observed between opioid and dopamine systems in reward function. µ-Opioid receptor knockout mice exhibited enhanced intracranial electrical stimulation, which induced dopamine release. They also exhibited greater motility under conditions of "despair" in both the tail suspension test and water wheel test. In contrast, dopamine transporter knockout mice maintained intracranial electrical stimulation responding even when more active efforts were required to obtain the reward. Conclusions: The absence of µ-opioid receptor or dopamine transporter did not lead to the absence of intracranial electrical stimulation responsiveness but rather differentially altered it. The present results in µ-opioid receptor knockout mice are consistent with the suppressive involvement of µ-opioid receptors in both positive incentive motivation associated with intracranial electrical stimulation and negative incentive motivation associated with depressive states. In contrast, the results in dopamine transporter knockout mice are consistent with the involvement of dopamine transporters in positive incentive motivation, especially its persistence. Differences in intracranial electrical stimulation in µ-opioid receptor and dopamine transporter knockout mice underscore the multidimensional nature of reward.


Assuntos
Analgésicos Opioides/metabolismo , Dopamina/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Receptores Opioides mu/deficiência , Animais , Biofísica , Proteínas da Membrana Plasmática de Transporte de Dopamina/deficiência , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Estimulação Elétrica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Motivação , Atividade Motora/efeitos dos fármacos , Receptores Opioides mu/genética , Recompensa , Autoadministração , Fatores de Tempo
9.
J Comput Aided Mol Des ; 31(2): 237-244, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28028736

RESUMO

Efficient and rapid prediction of domain regions from amino acid sequence information alone is often required for swift structural and functional characterization of large multi-domain proteins. Here we introduce Fast H-DROP, a thirty times accelerated version of our previously reported H-DROP (Helical Domain linker pRediction using OPtimal features), which is unique in specifically predicting helical domain linkers (boundaries). Fast H-DROP, analogously to H-DROP, uses optimum features selected from a set of 3000 ones by combining a random forest and a stepwise feature selection protocol. We reduced the computational time from 8.5 min per sequence in H-DROP to 14 s per sequence in Fast H-DROP on an 8 Xeon processor Linux server by using SWISS-PROT instead of Genbank non-redundant (nr) database for generating the PSSMs. The sensitivity and precision of Fast H-DROP assessed by cross-validation were 33.7 and 36.2%, which were merely ~2% lower than that of H-DROP. The reduced computational time of Fast H-DROP, without affecting prediction performances, makes it more interactive and user-friendly. Fast H-DROP and H-DROP are freely available from http://domserv.lab.tuat.ac.jp/ .


Assuntos
Proteínas/química , Software , Algoritmos , Bases de Dados de Proteínas , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína
10.
J Pharmacol Sci ; 135(3): 138-140, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29174627

RESUMO

We investigated the rapid and sustained antidepressant effects of enantiomers of ketamine in N-methyl-d-aspartate (NMDA) receptor GluN2D subunit knockout (GluN2D-KO) mice. Intraperitoneal administration of ketamine or its enantiomers 10 min before the tail-suspension test exerted significant antidepressant effects on restraint stress-induced depression in both wildtype and GluN2D-KO mice. The antidepressant effects of (RS)-ketamine and (S)-ketamine were sustained 96 h after the injection in both wildtype and GluN2D-KO mice, but such sustained antidepressant effects of (R)-ketamine were only observed in wildtype mice. These data suggest that the GluN2D subunit is critical for the sustained antidepressant effects of (R)-ketamine.


Assuntos
Antidepressivos/farmacologia , Ketamina/farmacologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Antidepressivos/administração & dosagem , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Injeções Intraperitoneais , Ketamina/administração & dosagem , Ketamina/uso terapêutico , Camundongos Endogâmicos C57BL , Estereoisomerismo
11.
Eur J Neurosci ; 44(11): 2914-2924, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27690274

RESUMO

Pain is a complex experience involving sensory and affective components. Although the neuronal mechanisms underlying the sensory component of pain have been extensively studied, those underlying its affective component have yet to be elucidated. Recently, we reported that corticotrophin-releasing factor (CRF)-induced depolarization in type II neurons within the dorsolateral bed nucleus of the stria terminalis (dlBNST) is critical for pain-induced aversive responses in rats. However, the intracellular signaling underlying the excitatory effects of CRF and the contribution of such signaling to the induction of pain-induced aversion remain unclear. In the present study, we addressed these issues by conducting whole-cell patch-clamp recordings in rat brain slices and by undertaking behavioral pharmacological analyses. Intracellular perfusion of protein kinase A (PKA) inhibitor Rp-cyclic adenosine monophosphorothioate (Rp-cAMPS) or KT5720 suppressed the excitatory effects of CRF in type II dlBNST neurons, and bath application of Rp-cAMPS also suppressed it. In addition, bath application of forskolin, an adenylate cyclase (AC) activator, mimicked the effects of CRF, and pretreatment with forskolin diminished the excitatory effects of CRF. Furthermore, a conditioned place aversion (CPA) test showed that co-administration of Rp-cAMPS with CRF into the dlBNST suppressed CRF-induced CPA. Intra-dlBNST injection of Rp-cAMPS also suppressed pain-induced CPA. These results suggest that CRF increases excitability of type II dlBNST neurons through activation of the AC-cAMP-PKA pathway, thereby causing pain-induced aversive responses. The present findings shed light on the neuronal mechanisms underlying the negative affective component of pain and may provide therapeutic targets for treating intractable pain accompanied by psychological factors.


Assuntos
Adenilil Ciclases/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Dor/metabolismo , Núcleos Septais/metabolismo , Transdução de Sinais , Animais , Carbazóis/farmacologia , Colforsina/farmacologia , Condicionamento Clássico , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Masculino , Dor/etiologia , Dor/fisiopatologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/fisiologia
12.
Mol Pain ; 11: 47, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26260446

RESUMO

BACKGROUND: Although alterations in not only the pain sensitivity but also the analgesic effects of opioids have been reported under conditions of stress, the influence of unpredictable chronic mild stress (UCMS) on the antinociceptive effects of opioid analgesics remains to be fully investigated. The present study examined the influence of UCMS on the thermal pain sensitivity and antinociceptive effects of two opioid analgesics, morphine (an agonist of opioid receptors) and tramadol (an agonist of µ-opioid receptor and an inhibitor of both noradrenaline and serotonin transporters). We also examined the effects of pretreatment with maprotiline (a noradrenaline reuptake inhibitor) and escitalopram (a serotonin reuptake inhibitor) on the antinociceptive action of morphine in mice under an UCMS condition. RESULTS: Unpredictable chronic mild stress did not affect the basal thermal pain sensitivity in a mouse hot-plate test. Although morphine dose-dependently induced thermal antinociceptive effects under both the UCMS and non-stress conditions, the thermal antinociceptive effect of 3 mg/kg morphine under the UCMS condition was significantly lower than under the non-stressed condition. Unlike the case with morphine, we observed no significant difference in the thermal antinociceptive effect of tramadol between the UCMS and non-stress conditions. Furthermore, the reduced thermal antinociceptive effect of 3 mg/kg morphine under the UCMS condition was significantly ameliorated by pretreatment with 10 mg/kg maprotiline but not 3 mg/kg escitalopram. Pretreatment with neither maprotiline nor escitalopram alone was associated with an antinociceptive effect under either condition. CONCLUSIONS: We demonstrated that the antinociceptive effect of morphine but not tramadol was reduced in mice that had experienced UCMS. The reduced antinociceptive effect of morphine under the UCMS condition was ameliorated by pretreatment with maprotiline but not escitalopram. These results suggest that the reduced antinociceptive effects of morphine under conditions of chronic stress may be ameliorated by activation of the noradrenergic but not the serotonergic system.


Assuntos
Analgésicos/farmacologia , Morfina/farmacologia , Norepinefrina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Doença Crônica , Citalopram/farmacologia , Modelos Animais de Doenças , Masculino , Maprotilina/farmacologia , Camundongos Endogâmicos BALB C , Temperatura , Tramadol/farmacologia
13.
J Neurosci ; 33(14): 5881-94, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23554470

RESUMO

Pain is a complex experience composed of sensory and affective components. Although the neural systems of the sensory component of pain have been studied extensively, those of its affective component remain to be determined. In the present study, we examined the effects of corticotropin-releasing factor (CRF) and neuropeptide Y (NPY) injected into the dorsolateral bed nucleus of the stria terminalis (dlBNST) on pain-induced aversion and nociceptive behaviors in rats to examine the roles of these peptides in affective and sensory components of pain, respectively. In vivo microdialysis showed that formalin-evoked pain enhanced the release of CRF in this brain region. Using a conditioned place aversion (CPA) test, we found that intra-dlBNST injection of a CRF1 or CRF2 receptor antagonist suppressed pain-induced aversion. Intra-dlBNST CRF injection induced CPA even in the absence of pain stimulation. On the other hand, intra-dlBNST NPY injection suppressed pain-induced aversion. Coadministration of NPY inhibited CRF-induced CPA. This inhibitory effect of NPY was blocked by coadministration of a Y1 or Y5 receptor antagonist. Furthermore, whole-cell patch-clamp electrophysiology in dlBNST slices revealed that CRF increased neuronal excitability specifically in type II dlBNST neurons, whereas NPY decreased it in these neurons. Excitatory effects of CRF on type II dlBNST neurons were suppressed by NPY. These results have uncovered some of the neuronal mechanisms underlying the affective component of pain by showing opposing roles of intra-dlBNST CRF and NPY in pain-induced aversion and opposing actions of these peptides on neuronal excitability converging on the same target, type II neurons, within the dlBNST.


Assuntos
Sintomas Afetivos/tratamento farmacológico , Hormônio Liberador da Corticotropina/efeitos adversos , Hormônios/efeitos adversos , Neuropeptídeo Y/uso terapêutico , Dor/complicações , Núcleos Septais/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Sintomas Afetivos/etiologia , Análise de Variância , Compostos de Anilina/farmacologia , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Hormônio Liberador da Corticotropina/agonistas , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Cicloexanos/farmacologia , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Formaldeído/toxicidade , Antagonistas GABAérgicos/farmacologia , Antagonistas de Hormônios/farmacologia , Hormônios/agonistas , Técnicas In Vitro , Ácido Cinurênico/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Microdiálise , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/agonistas , Neuropeptídeo Y/antagonistas & inibidores , Dor/induzido quimicamente , Medição da Dor , Fragmentos de Peptídeos/farmacologia , Piridazinas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Núcleos Septais/citologia , Núcleos Septais/fisiologia , Xantenos/farmacologia
14.
Mol Pain ; 10: 75, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25472448

RESUMO

BACKGROUND: The P2X7 receptor is a member of the P2X family of adenosine 5'-triphosphate-gated cation channels. Several recent studies have demonstrated that this receptor is involved in mechanisms related to pain and inflammation. However, unknown is whether polymorphisms of the P2RX7 gene that encodes the human P2X7 receptor influence pain sensitivity and analgesic effects of opioids. The P2RX7 gene is known to be highly polymorphic. Thus, the present study examined associations between fentanyl sensitivity and polymorphisms in the P2RX7 gene in 355 Japanese patients who underwent painful orofacial cosmetic surgery. RESULTS: We first conducted linkage disequilibrium (LD) analyses for 55 reported single-nucleotide polymorphisms (SNPs) in the region within and around the P2RX7 gene using genomic samples from 100 patients. In our samples, 42 SNPs were polymorphic, and a total of five LD blocks with six Tag SNPs (rs2708092, rs1180012, rs1718125, rs208293, rs1718136, and rs7132846) were observed. Thus, we further analyzed associations between genotypes/haplotypes of these Tag SNPs and clinical data using a total of 355 samples. In the genotype-based association study, only the rs1718125 G>A SNP tended to be associated with higher pain scores on a visual analog scale 24 h after surgery (VAS24). The haplotype-based association study showed that subjects with homozygous haplotype No.3 (GTAAAC; estimated frequency: 15.0%) exhibited significantly higher cold pain sensitivity and lower analgesic effects of fentanyl for acute cold pain in the cold pressor test. Conversely, subjects who carried haplotype No.1 (ACGGAC; estimated frequency: 24.5%) tended to exhibit lower cold pain sensitivity and higher analgesic effects of fentanyl. Furthermore, subjects with homozygous haplotype No.2 (GCGGAC; estimated frequency: 22.9%) exhibited significantly lower VAS24 scores. CONCLUSIONS: Cold pain sensitivity and analgesic effects of fentanyl were related to the SNP and haplotypes of the P2RX7 gene. The patients with the rs1718125 G>A SNP tended to show higher VAS24 scores. Moreover, the combination of polymorphisms from the 5'-flanking region to exon 5 recessively affected cold pain sensitivity and analgesic effects of opioids for acute cold pain. The present findings shed light on the involvement of P2RX7 gene polymorphisms in naive cold pain sensitivity and analgesic effects of fentanyl.


Assuntos
Fentanila/farmacologia , Dor/genética , Receptores Purinérgicos P2X7/genética , Adulto , Analgésicos/farmacologia , Cátions , Temperatura Baixa , Feminino , Frequência do Gene , Genótipo , Haplótipos , Humanos , Canais Iônicos/metabolismo , Japão , Desequilíbrio de Ligação , Masculino , Manejo da Dor/métodos , Limiar da Dor/fisiologia , Polimorfismo de Nucleotídeo Único , Adulto Jovem
15.
Nihon Arukoru Yakubutsu Igakkai Zasshi ; 49(2): 92-103, 2014 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-24946392

RESUMO

Although the involvement and plasticity of the mesocorticolimbic dopamine (DA) system in cocaine-induced addiction have been studied extensively, the role of the brainstem cholinergic system in cocaine addiction remains largely unexplored. The laterodorsal tegmental nucleus (LDT) contains cholinergic neurons that innervate the ventral tegmental area (VTA) and is crucial for regulating the activity of VTA DA neurons, implying that LDT may also be associated with cocaine addiction. In this review, we summarize our recent findings showing that cholinergic transmission from the LDT to the VTA is involved in acquisition and expression of cocaine-induced conditioned place preference and that, after repeated cocaine exposures, these neurons exhibit synaptic plasticity, which is dependent on NMDA receptor activation, nitric oxide production, and the activity of medial prefrontal cortex. The findings strongly suggest that LDT cholinergic neurons may critically contribute to developing cocaine-induced addiction.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína , Cocaína/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Animais , Comportamento Aditivo/tratamento farmacológico , Comportamento Aditivo/fisiopatologia , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatologia , Neurônios Colinérgicos/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Humanos , Plasticidade Neuronal/fisiologia
16.
Bioorg Med Chem ; 21(17): 4938-50, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23886812

RESUMO

A series of cyclopropane-based conformationally restricted γ-aminobutyric acid (GABA) analogs with stereochemical diversity, that is, the trans- and cis-2,3-methano analogs Ia and Ib and their enantiomers ent-Ia and ent-Ib, and also the trans- and cis-3,4-methano analogs IIa and IIb and their enantiomers ent-IIa and ent-Iib, were synthesized from the chiral cyclopropane units Type-a and Type-b that we developed. These analogs were systematically evaluated with four GABA transporter (GAT) subtypes. The trans-3,4-methano analog IIa had inhibitory effects on GAT3 (IC50=23.9µM) and betaine-GABA transporter1 (5.48µM), indicating its potential as an effective lead compound for the development of potent GAT inhibitors due to its hydrophilic and low molecular weight properties and excellent ligand efficiency.


Assuntos
Ciclopropanos/química , Moduladores GABAérgicos/química , Proteínas da Membrana Plasmática de Transporte de GABA/química , Ácido gama-Aminobutírico/química , Animais , Anticonvulsivantes/química , Anticonvulsivantes/metabolismo , Anticonvulsivantes/uso terapêutico , Encéfalo/metabolismo , Moduladores GABAérgicos/metabolismo , Moduladores GABAérgicos/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Ligantes , Camundongos , Ligação Proteica , Ratos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Estereoisomerismo , Relação Estrutura-Atividade , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/uso terapêutico
17.
J Pharmacol Sci ; 123(2): 140-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24096834

RESUMO

Electrophysiological studies were performed to determine whether serotonergic modulation in the nucleus accumbens (NAcc) was affected after repeated methamphetamine (MAP) administration. NAcc slices (400 µm) from Wistar rats administered MAP (5 mg/kg) or saline once daily for 5 days were prepared 1, 5, or 10 days after the final injection. Population spikes (PS) induced by local stimulation of NAcc were recorded. PS inhibition by serotonin was significantly attenuated in the MAP group at 5 days but did not differ at 1 or 10 days. We next analyzed the effects of serotonin receptor subtype (5-HT1A,2,3,4,6,7)-selective agonists of PS. Differences between saline and MAP groups in 5-HT1A,2,3,4,6 receptor agonist-induced changes of PS were small or not significant. Interestingly, 5-HT7 receptor agonists significantly enhanced PS in the MAP group. Changes in the secondary messenger system related to 5-HT7 receptors were also investigated. Adenylate cyclase activator-induced PS enhancements were significantly larger in the MAP group. However, dibutyryl-cAMP-induced PS enhancement was not significantly different. In conclusion, 5-HT-induced inhibition of PS in NAcc was attenuated 5 days after repeated MAP treatment: the change in the effect of 5-HT was probably due to enhancement of the excitatory modulation via the 5-HT7 receptor with adenylate cyclase signal transduction systems.


Assuntos
Adenilil Ciclases/fisiologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Metanfetamina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Receptores de Serotonina/fisiologia , Antagonistas da Serotonina , Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Animais , Ativadores de Enzimas/farmacologia , Técnicas In Vitro , Masculino , Metanfetamina/administração & dosagem , Inibição Neural/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Ratos , Ratos Wistar , Sistemas do Segundo Mensageiro/fisiologia , Serotonina/fisiologia , Agonistas do Receptor de Serotonina/farmacologia , Fatores de Tempo
18.
Sci Rep ; 13(1): 18164, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875567

RESUMO

Opioid addiction and the opioid overdose epidemic are becoming more serious, and the development of therapeutic agents is essential for the pharmacological treatment of substance use disorders. The κ-opioid receptor (KOP) is a member of the opioid receptor system that has been gaining attention as a promising molecular target for the treatment of numerous human disorders, including pain, depression, anxiety, and drug addiction. Here, we biologically and pharmacologically evaluated a novel azepane-derived ligand, NP-5497-KA, as a selective KOP agonist. NP-5497-KA had 1000-fold higher selectivity for the KOP over the µ-opioid receptor (MOP), which was higher than nalfurafine (KOP/MOP: 65-fold), and acted as a selective KOP full agonist in the 3',5'-cyclic adenosine monophosphate assay. The oral administration of NP-5497-KA (1-10 mg/kg) dose-dependently suppressed morphine-induced conditioned place preference in C57BL/6 J mice, and its effects were comparable to an intraperitoneal injection of nalfurafine (1-10 µg/kg). Nalfurafine (10 µg/kg) significantly inhibited rotarod performance, whereas NP-5497-KA (10 mg/kg) exerted no effect on rotarod performance. These results indicate that NP-5497-KA may be a novel option for the treatment of opioid use disorder with fewer side effects.


Assuntos
Morfina , Transtornos Relacionados ao Uso de Opioides , Camundongos , Animais , Humanos , Morfina/farmacologia , Camundongos Endogâmicos C57BL , Receptores Opioides , Receptores Opioides mu/agonistas , Receptores Opioides kappa/agonistas , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Recompensa , Analgésicos Opioides/farmacologia
19.
Neurochem Int ; 164: 105491, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36709046

RESUMO

Drug abuse is one of the great social problems in the world and a major healthcare challenge. It is supposed that sensitivity and reactivity to abuse drugs may vary from person to person, while its molecular basis is largely unknown. Dopaminergic neurons are deeply involved in addiction, and tyrosine hydroxylase (TH) catalyzes the first and rate-limiting step of the biosynthesis of dopamine (DA). We investigated the effects of increased TH expression on the metabolism of DA and reactivity to methamphetamine (METH), a drug of abuse, in mice. Wild-type TH (WT-TH) or the S40E mutant of TH (S40E-TH), which is an active form of TH mimicking phosphorylated TH at the 40th serine, was expressed in midbrain dopaminergic neurons using an adeno-associated virus (AAV) vector. The biochemical analysis showed that the turnover rates of DA in the nerve terminals were increased by the expression of WT-TH and S40E-TH, while there were few changes in the DA contents. Next, we administered METH to TH-overexpressing mice. We found that the S40E-TH-expressing mice responded to lower doses of METH than the control mice and WT-TH mice. The stereotyped behaviors appeared first in S40E-TH mice and then in WT-TH and control mice in this order. These data showed that the TH activity and expression level differentially affect DA metabolism in the nerve terminals from that in the cell bodies and that the TH activity and expression level are one of the determining factors for sensitivity and reactivity to METH. We suggest that TH may be a drug target for ameliorating sensitivity to drugs of abuse.


Assuntos
Metanfetamina , Camundongos , Animais , Metanfetamina/farmacologia , Neurônios Dopaminérgicos , Tirosina 3-Mono-Oxigenase/metabolismo , Dopamina/metabolismo , Mesencéfalo
20.
Allergol Int ; 61(2): 245-58, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22189590

RESUMO

BACKGROUND: Psychological stress has a recognized association with asthma symptoms. Using a murine model of allergic asthma, we recently demonstrated the involvement of µ-opioid receptors (MORs) in the central nervous system in the stress-induced exacerbation of airway inflammation. However, the involvement of MORs on neurons and immunological alterations in the stress asthma model remain unclear. METHODS: MOR-knockout (MORKO) mice that express MORs only on noradrenergic and adrenergic neurons (MORKO/Tg mice) were produced and characterized for stress responses. Sensitized mice inhaled antigen and were then subjected to restraint stress. After a second antigen inhalation, bronchoalveolar lavage cells were counted. Before the second inhalation, bronchial lymph node (BLN) cells and splenocytes from stressed and non-stressed mice were cultured with antigen, and cytokine levels and the proportions of T cell subsets were measured. RESULTS: Stress-induced worsening of allergic airway inflammation was observed in wild-type and MORKO/Tg mice but not MORKO mice. In wild-type stressed mice, IFN-γ/IL-4 ratios in cell culture supernatants and the proportion of regulatory T cells in BLN cell populations were significantly lower than those in non-stressed mice. These differences in BLN cells were not observed between the stressed and non-stressed MORKO mice. Restraint stress had no effect on cytokine production or T cell subsets in splenocytes. CONCLUSIONS: Restraint stress aggravated allergic airway inflammation in association with alterations in local immunity characterized by greater Th2-associated cytokine production and a reduced development of regulatory T cells, mediated by MORs.


Assuntos
Neurônios Adrenérgicos/metabolismo , Asma/imunologia , Receptores Opioides mu/metabolismo , Estresse Psicológico/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th2/metabolismo , Neurônios Adrenérgicos/patologia , Animais , Asma/etiologia , Asma/genética , Asma/psicologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-4/metabolismo , Linfonodos/patologia , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Opioides mu/genética , Receptores Opioides mu/imunologia , Estresse Psicológico/complicações , Estresse Psicológico/genética , Estresse Psicológico/psicologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia , Células Th2/imunologia , Células Th2/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA