Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Phys Chem Chem Phys ; 22(36): 20704-20711, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32901640

RESUMO

The geometric structure, electronic, optical and photocatalytic properties of MSSe-g-GaN (M = Mo, W) van der Waals (vdW) heterostructures are investigated by performing first-principles calculations. We find that the MoSSe-g-GaN heterostructure exhibits type-II band alignment for all stacking patterns. While the WSSe-g-GaN heterostructure forms the type-II or type-I band alignment for the stacking model-I or model II, respectively. The average electrostatic potential shows that the potential of g-GaN is deeper than the MSSe monolayer, leading to the formation of an electrostatic field across the interface, causing the transfer of photogenerated electrons and holes. Efficient interfacial formation of interface and charge transfer reduce the work function of MSSe-g-GaN vdW heterostructures as compared to the constituent monolayer. The difference in the carrier mobility for electrons and holes suggests that these heterostructures could be utilized for hole/electron separation. Absorption spectra demonstrate that strong absorption from infrared to visible light in these vdW heterostructures can be achieved. Appropriate valence and conduction band edge positions with standard redox potentials provide enough force to drive the photogenerated electrons and holes to dissociate water into H+/H2 and O2/H2O at pH = 0.

2.
Phys Chem Chem Phys ; 22(18): 10351-10359, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32365147

RESUMO

Vertical stacking of two-dimensional materials into layered van der Waals heterostructures has recently been considered as a promising candidate for photocatalytic and optoelectronic devices because it can combine the advantages of the individual 2D materials. Janus transition metal dichalcogenides (JTMDCs) have emerged as an appealing photocatalytic material due to the desirable electronic properties. Hence, in this work, we systematically investigate the geometric features, electronic properties, charge density difference, work function, band alignment and photocatalytic properties of ZnO-JTMDC heterostructures using first-principles calculations. Due to the different kinds of chalcogen atoms on both sides of JTMDC monolayers, two different possible stacking patterns of ZnO-JTMDC heterostructures have been constructed and considered. We find that all these stacking patterns of ZnO-JTMDC heterostructures are dynamically and energetically feasible. Moreover, both ZnO-MoSSe and ZnO-WSSe heterostructures are indirect band gap semiconductors and present type-I and type-II band alignments for model-I and model-II, respectively. The Rashba spin polarization of the ZnO-WSSe heterostructure for model-I is greater than that in the others. Furthermore, valence (conduction) band edge potentials are calculated to understand the photocatalytic behavior of these systems. Energetically favorable band edge positions in ZnO-Janus heterostructures make them suitable for water splitting at zero pH. We found that the ZnO-Janus heterostructures are promising candidates for water splitting with conduction and valence band edges positioned just outside of the redox interval.

3.
Phys Chem Chem Phys ; 22(15): 7952-7961, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32232260

RESUMO

Constructing vertical heterostructures by placing graphene (Gr) on two-dimensional materials has recently emerged as an effective way to enhance the performance of nanoelectronic and optoelectronic devices. In this work, first principles calculations are employed to explore the structural and electronic properties of Gr/GeC and Gr/functionalized-GeC by H/F/Cl surface functionalization. Our results imply that the electronic properties of the Gr, GeC and all functionalized-GeC monolayers are well preserved in Gr/GeC and Gr/functionalized-GeC heterostructures, and the Gr/GeC heterostructure forms a p-type Schottky contact. Interestingly, we find that the p-type Schottky contact in Gr/GeC can be converted into the n-type one and into an n-type ohmic contact by H/F/Cl surface functionalization to form Gr/functionalized-GeC heterostructures. Furthermore, we find that electric fields and strain engineering can change both the Schottky barrier heights and the contact types of the Gr/functionalized-GeC vdWHs. These findings suggest that Gr/functionalized-GeC heterostructures can be considered as a promising candidate for designing high-performance optoelectronic and nanoelectronic devices.

4.
Phys Chem Chem Phys ; 21(34): 18612-18621, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31414085

RESUMO

Janus monolayers and their van der Waals heterostuctures are investigated by hybrid density functional theory calculations. MoSSe, WSSe, MoSeTe and WSeTe are found to be direct band gap semiconductors. External electric fields are used to transform indirect MoSTe and WSTe to direct band gap semiconductors. MoSSe-WSSe, MoSeTe-WSeTe and MoSTe-WSTe vdW heterostructures are also indirect band gap semiconductors with type-II band alignment. Similar to the corresponding monolayers, in some of the above mentioned vdW heterostructures an external electric field and tensile strain can transform indirect to direct band gaps, while sustaining type-II band alignment. Janus monolayers have lower values of the work function (φ) than their vdW heterostructure counterparts. Furthermore, absorption spectra, absorption efficiency, and valence(conduction) band edge potentials are calculated to understand the optical and photocatalytic behavior of these systems. Red and blue shifts are observed in the position of excitonic peaks due to the induced strain in Janus monolayers. Strong device absorption efficiencies (80-90%) are observed for the WSeTe, MoSTe and WSTe monolayers in the visible, infra-red and ultraviolet regions. Energetically favourable band edge positions in Janus monolayers make them suitable for water splitting at zero pH. We find that the MoSSe-WSSe heterostructure and the MoSTe monolayer are promising candidates for water splitting with conduction and valence band edges positioned just outside of the redox interval.

5.
Phys Chem Chem Phys ; 21(39): 22140-22148, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31573019

RESUMO

van der Waals heterostructures (vdWHs), obtained by vertically stacking different two-dimensional (2D) layered materials are being considered intensively as potential materials for nanoelectronic and optoelectronic devices because they can show the most potential advantages of individual 2D materials. Here, we construct the SnSe2/MoS2 vdWH and investigate its electronic and optical properties using first-principles calculations. We find that the band structures of both MoS2 and SnSe2 monolayers are well kept in the SnSe2/MoS2 vdWH because of their weakly interacting features via vdW interaction. The SnSe2/MoS2 vdWH forms a type-I band alignment and exhibits an indirect semiconductor band gap of 0.45 eV. The type-I band alignment makes the SnSe2/MoS2 vdWH a promising material for optoelectronic nanodevices, such as light emitting diodes because of ultra-fast recombination of electrons and holes. Moreover, the band gap and band alignment of the SnSe2/MoS2 vdWH can be tailored by the electric field and the insertion of a graphene sheet. After applying an electric field, type-I to type-II and semiconductor to metal transitions can be achieved in the SnSe2/MoS2 vdWH. Besides, when a graphene sheet is inserted into the SnSe2/MoS2 vdWH to form three stacking types of G/SnSe2/MoS2, SnSe2/G/MoS2 and SnSe2/MoS2/G, the p-type semiconductor of the SnSe2/MoS2 vdWH is converted to an n-type Ohmic contact. These findings provide theoretical guidance for designing future nanoelectronic and optoelectronic devices based on the SnSe2/MoS2 vdWH.

6.
Phys Chem Chem Phys ; 21(46): 25849-25858, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31735947

RESUMO

van der Waals heterostructures can be effectively used to enhance the electronic and optical properties and extend the application range of two-dimensional materials. Here, we construct for the first time MoSeTe/X(OH)2 (X = Ca, Mg) heterostructures and investigate their electronic and optical properties as well as the relative orientation of these layers with respect to each other and the effects of an electric field. Our results show that in the MoSeTe/X(OH)2 heterostructures, the Janus MoSeTe monolayer is bonded to the X(OH)2 layer via weak van der Waals forces. Owing to different kinds of chalcogen Se and Te atoms in both sides of Janus MoSeTe, there exist two main stacking types of the MoSeTe/X(OH)2 heterostructures, that are MoSeTe-Se/X(OH)2 and MoSeTe-Te/X(OH)2 heterostructures. Interestingly, the Se- and Te-interface can induce straddling type-II and type-I band alignments. The MoSeTe-Se/X(OH)2 heterostructure exhibits a type-II band alignment, thus endowing it with a potential ability to separate photogenerated electrons and holes. Whereas, the MoSeTe-Te/Ca(OH)2 heterostructure displays a type-I band alignment, which may result in an ultrafast recombination between electrons and holes, making the MoSeTe-Te/Ca(OH)2 heterostructure a suitable material for optoelectronic applications. The MoSeTe/X(OH)2 heterostructures show an isotropic behavior in the low energy region while an anisotropic behaviour in the high photon energy region. The dielectric function of the MoSeTe-Te/Ca(OH)2 heterostructure is high at low photon energy relative to other heterostructures verifying it to have a good optical absorption. Furthermore, the band gap values and band alignment of the MoSeTe/X(OH)2 heterostructures can be modulated by applying an electric field, which induces semiconductor-to-metal and type-I(II) to type-II(I) band alignment. These results demonstrate that the MoSeTe/X(OH)2 heterostructures are promising candidates for optoelectronic and photovoltaic nanodevices.

7.
J Biol Phys ; 45(3): 275-291, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31375953

RESUMO

Pertussis (or whooping cough) is a contagious disease mainly affecting infants and children and predominantly caused by Bordetella pertussis followed by Bordetella parapertussis. B. parapertussis causes a milder cough but usually symptomatically appears like B. pertussis infection. Thus the epidemiology of illness caused by B. parapertussis is not well understood. In this study, a sensitive and specific method for the rapid diagnosis of B. parapertussis is presented. The covalent immobilization of thiol-terminated DNA oligonucleotides (ss DNA SAM) on a silicon surface by disulfide bond formation is investigated with atomic force microscopy (AFM) and ellipsometry. The measurements indicated an average layer thickness of 5 ± 0.84 nm for 2 µg/µl concentration and 24 h incubation time. This thickness changed to 8.4 ± 0.92 nm for the same concentration (2 µg/µl) by altering the incubation time to 48 h. Ellipsometric data recorded before and after hybridization of B. parapertussis revealed an increase in mean grain area from 91 nm2 to 227 nm2 and a change in the refractive index from 1.489 to 1.648 for 2 µg/µl B. parapertussis, respectively. This change in the refractive index was used to evaluate the amount of adsorbed molecules and their density. The results showed that the density of adsorbed molecules increased from 0.2 to 0.97 g/cm3 after B. parapertussis attachment, respectively. To confirm the hybridization of B. parapertussis to ss DNA SAM, the ds DNA SAM was denatured and the ss DNA SAM surface was reproduced with an average height variation of 6.42 ± 0.75 nm. This showed the stability of the DNA film that can be tuned by varying the concentration and incubation time, thus providing a robust method for the label-free detection of B. parapertussis other than routinely used PCR detection.


Assuntos
Técnicas Biossensoriais/métodos , Bordetella parapertussis/isolamento & purificação , DNA de Cadeia Simples/química , Adsorção , Ouro/química , Modelos Moleculares , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Propriedades de Superfície , Fatores de Tempo
8.
Microb Pathog ; 120: 176-180, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29733903

RESUMO

Blackleg is an endogenous acute infection that principally affects cattle. The disease is caused by Clostridium chauvoei (C. chauvoei), an anaerobic spore forming bacterium. Control of this disease is based on stringent husbandry measures and scheduled vaccination plan. In recent years, the major virulence factors of C. chauvoei have been discovered and described. However, the pathogenesis of blackleg in cattle and in particular, circulation of the pathogen from point of entry to target tissues is yet not fully elucidated. This review summarizes the latest review of literature that significantly contributed for understanding the disease in cattle, and provides a foundation to preventive strategies.

9.
Phys Chem Chem Phys ; 20(37): 24168-24175, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30207335

RESUMO

The stacking of monolayers in the form of van der Waals heterostructures is a useful strategy for band gap engineering and the control of dynamics of excitons for potential nano-electronic devices. We performed first-principles calculations to investigate the structural, electronic, optical and photocatalytic properties of the SiC-MX2 (M = Mo, W and X = S, Se) van der Waals heterostructures. The stability of most favorable stacking is confirmed by calculating the binding energy and phonon spectrum. SiC-MoS2 is found to be a direct band gap type-II semiconducting heterostructure. Moderate in-plane tensile strain is used to achieve a direct band gap with type-II alignment in the SiC-WS2, SiC-MoSe2 and SiC-WSe2 heterostructures. A difference in the ionization potential of the corresponding monolayers and interlayer charge transfer further confirmed the type-II band alignment in these heterostructures. Furthermore, the optical behaviour is investigated by calculation of the absorption spectra in terms of ε2(ω) of the heterostructures and the corresponding monolayers. The photocatalytic response shows that the SiC-Mo(W)S2 heterostructures can oxidize H2O to O2. An enhanced photocatalytic performance with respect to the parent monolayers makes the SiC-Mo(W)Se2 heterostructures promising candidates for water splitting.

10.
Med Oral Patol Oral Cir Bucal ; 23(4): e384-e390, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29924753

RESUMO

BACKGROUND: This study aimed to test the association between the unstimulated whole salivary flow rate (UWSFR) and the oral health status represented by dental and gingival status among healthy adult subjects. MATERIAL AND METHODS: This work was a cross-sectional study of patients attending the undergraduate dental clinics at AlFarabi College for Dentistry and Nursing, Riyadh, Saudi Arabia. The study population consisted of 502 systemically healthy adults aged 18-35 years. UWSFR was collected for all study participants and expressed as ml/min. Oral health status was estimated using the Community Periodontal Index (CPI) and the Oral Hygiene Index-Simplified (OHI-S). The number of decayed teeth and the number of available teeth were also calculated to evaluate dental status. RESULTS: The mean UWSFR was 0.42 (±0.3) ml/min, and the male participants significantly had more UWSFR than the females. UWSFR was significantly affected by CPI, OHI-S, body mass index (BMI) and gender as indicated in the univariate analysis. However, multiple regression analysis revealed that only gender was a significant predictor of UWSFR. The male subjects were shown to have a higher average of 0.133 ml/min than the females. CONCLUSIONS: High BMI scores, moderate-to-severe gingivitis and low level of oral hygiene increased UWSFR. However, further longitudinal studies are recommended to test the role of salivary cytokine levels to validate the exact association between the UWSFR and the oral health status.


Assuntos
Saúde Bucal , Salivação , Adolescente , Adulto , Estudos Transversais , Cárie Dentária/epidemiologia , Feminino , Humanos , Masculino , Índice Periodontal , Adulto Jovem
11.
Biochem Biophys Res Commun ; 448(1): 33-8, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24747076

RESUMO

Fluorescent proteins are a family of proteins capable of producing fluorescence at various specific wavelengths of ultra violet light. We have previously reported the identification and characterization of a novel cyan fluorescent protein (HriCFP) from a reef coral species, Hydnophora rigida. In search of new members of the diverse family of fluorescent proteins, here we report a new green fluorescent protein (HriGFP) from H. rigida. HriGFP was identified, cloned, expressed in Escherichia coli and purified to homogeneity by metal affinity and size exclusion chromatography. The dynamic light scattering and gel filtration experiments suggested the presence of monomers in solution. The peptide mass fingerprint on the purified protein established the identity of HriGFP. HriGFP had excitation peak at 507 nm and emission peak at 527 nm. HriGFP was similar to HriCFP except the last 16 amino acid sequence at the C-terminal; however, they have shown least similarity with other known fluorescent proteins. Moreover the computational model suggests that HriGFP is a globular protein which consists of 6 α-helices and 3 ß-sheets. Taken together our results suggested that HriGFP is a novel naturally occurring fluorescent protein that exists as a monomer in solution.


Assuntos
Proteínas de Fluorescência Verde/isolamento & purificação , Sequência de Aminoácidos , Animais , Antozoários/metabolismo , Clonagem Molecular , Dados de Sequência Molecular , Análise de Sequência de Proteína
13.
Nanoscale Adv ; 5(5): 1405-1415, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36866260

RESUMO

Using DFT, the electronic structure, optical, and photocatalytic properties of PN (P = Ga, Al) and M2CO2 (M = Ti, Zr, Hf) monolayers and their PN-M2CO2 van der Waals heterostructures (vdWHs) are investigated. Optimized lattice parameters, bond length, bandgap, conduction and valence band edges show the potential of PN (P = Ga, Al) and M2CO2 (M = Ti, Zr, Hf) monolayers in photocatalytic applications, and the application of the present approach to combine these monolayers and form vdWHs for efficient electronic, optoelectronic and photocatalytic applications is shown. Based on the same hexagonal symmetry and experimentally achievable lattice mismatch of PN (P = Ga, Al) with M2CO2 (M = Ti, Zr, Hf) monolayers, we have fabricated PN-M2CO2 vdWHs. Binding energies, interlayer distance and AIMD calculations show the stability of PN-M2CO2 vdWHs and demonstrate that these materials can be easily fabricated experimentally. The calculated electronic band structures show that all the PN-M2CO2 vdWHs are indirect bandgap semiconductors. Type-II[-I] band alignment is obtained for GaN(AlN)-Ti2CO2[GaN(AlN)-Zr2CO2 and GaN(AlN)-Hf2CO2] vdWHs. PN-Ti2CO2 (PN-Zr2CO2) vdWHs with a PN(Zr2CO2) monolayer have greater potential than a Ti2CO2(PN) monolayer, indicating that charge is transfer from the Ti2CO2(PN) to PN(Zr2CO2) monolayer, while the potential drop separates charge carriers (electron and holes) at the interface. The work function and effective mass of the carriers of PN-M2CO2 vdWHs are also calculated and presented. A red (blue) shift is observed in the position of excitonic peaks from AlN to GaN in PN-Ti2CO2 and PN-Hf2CO2 (PN-Zr2CO2) vdWHs, while significant absorption for photon energies above 2 eV for AlN-Zr2CO2, GaN-Ti2CO2 and PN-Hf2CO2, give them good optical profiles. The calculated photocatalytic properties demonstrate that PN-M2CO2 (P = Al, Ga; M = Ti, Zr, Hf) vdWHs are the best candidates for photocatalytic water splitting.

14.
Nanoscale Adv ; 5(6): 1816, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926571

RESUMO

[This corrects the article DOI: 10.1039/D3NA00017F.].

15.
RSC Adv ; 13(14): 9624-9635, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36968037

RESUMO

Vertical stacking of two-dimensional materials into layered van der Waals heterostructures is considered favourable for nanoelectronics and thermoelectric applications. In this work, we investigate the structural, electronic and thermoelectric properties of GeC and Janus monolayers MXO (M = Ti, Zr; X = S, Se) and their van der Waals (vdW) heterostructures using first-principles calculations. The values of binding energies, interlayer distances and thermal stability confirm the stability of these vdW heterostructures. The calculated band structure shows that GeC monolayer have a direct band gap while MXO (M = Ti, Zr; X = S, Se) and their van der Waals heterostructures show indirect band nature. Partial density of states confirms the type-II band alignment of GeC-MXY vdW heterostructures. Our results shows that ZrSeO (GeC) monolayers and GeC-ZrSO vdW heterostructures have higher power factor, making them promising for thermoelectric device applications.

16.
Nanoscale Adv ; 5(21): 5829-5837, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37881719

RESUMO

Binding energies, AIMD simulation and phonon spectra confirm both the thermal and dynamical stabilities of model-I and model-II of MSSe-PtO2 (M = Mo, W) vdWHs. An indirect type-II band alignment in both the models of MSSe-PtO2 vdWHs and a larger Rashba spin splitting in model-II than in model-I provide a platform for experimental design of MSSe-PtO2 vdWHs for optoelectronics and spintronic device applications. Transfer of electrons from the MSSe layer to the PtO2 layer at the interface of MSSe-PtO2 vdWHs makes MSSe (PtO2) p(n)-type. Large absorption in the visible region of MoSSe-PtO2 vdWHs, while blue shifts in WSSe-PtO2 vdWHs are observed. In the case of model-II of MSSe-PtO2 vdWHs, a further blue shift is observed. Furthermore, the photocatalytic response shows that MSSe-PtO2 vdWHs cross the standard water redox potentials confirming their capability to split water into H+/H2 and O2/H2O.

17.
RSC Adv ; 13(17): 11546, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37063724

RESUMO

[This corrects the article DOI: 10.1039/D1RA06011B.].

19.
RSC Adv ; 12(20): 12292-12302, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35480342

RESUMO

Using (hybrid) first principles calculations, the electronic band structure, type of Schottky contact and Schottky barrier height established at the interface of the most stable stacking patterns of the CS-MX2 (M = Mo, W; X = S, Se, Te) and CS-MXY ((X ≠ Y) = S, Se, Te) MS vdWH are investigated. The electronic band structures of CS-MX2 and CS-MXY MS vdWH seem to be simple sum of CS, MX2 and MXY monolayers. The projected electronic properties of the CS, MX2 and MXY layers are well preserved in CS-MX2 and CS-MXY MS vdWH. Their smaller effective mass (higher carrier mobility) render promising prospects of CS-WS2 and CS-MoSeTe as compared to other MS vdWH in nanoelectronic and optoelectronic devices, such as a high efficiency solar cell. In addition, we found that the effective mass of holes is higher than that of electrons, suggesting that these heterostructures can be utilized for hole/electron separation. Interestingly, the MS contact led to the formation of a Schottky contact or ohmic contact, therefore we have used the Schottky Mott rule to calculate the Schottky barrier height (SBH) of CS-MX2 (M = Mo, W; X = S, Se, Te) and CS-MXY ((X ≠ Y) = S, Se, Te) MS vdWH. It was found that CS-MX2 (M = Mo, W; X = S, Se, Te) and CS-MXY ((X ≠ Y) = S, Se, Te) (in both model-I and -II) MS vdWH form p-type Schottky contacts. These p-type Schottky contacts can be considered a promising building block for high-performance photoresponsive optoelectronic devices, p-type electronics, CS-based contacts, and for high-performance electronic devices.

20.
RSC Adv ; 12(18): 11202-11206, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35425062

RESUMO

Low cost and highly efficient two dimensional materials as photocatalysts are gaining much attention to utilize solar energy for water splitting and produce hydrogen fuel as an alternative to deal with the energy crisis and reduce environmental hazards. First principles calculations are performed to investigate the electronic, optical and photocatalytic properties of novel two dimensional transition metal dipnictide XP2 (X = Ti, Zr, Hf) monolayers. The studied single layer XP2 is found to be dynamically and thermally stable. TiP2, ZrP2 and HfP2 systems exhibit semiconducting nature with moderate indirect band gap values of 1.72 eV, 1.43 eV and 2.02 eV, respectively. The solar light absorption is found to be in energy range of 1.65-3.3 eV. All three XP2 systems (at pH = 7) and the HfP2 monolayer (at pH = 0) that straddle the redox potentials, are promising candidates for the water splitting reaction. These findings enrich the two dimensional family and provide a platform to design novel devices for emerging optoelectronic and photovoltaic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA