Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2812, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561389

RESUMO

To reach the energy efficiency and the computing capability of biological neural networks, novel hardware systems and paradigms are required where the information needs to be processed in both spatial and temporal domains. Resistive switching memory (RRAM) devices appear as key enablers for the implementation of large-scale neuromorphic computing systems with high energy efficiency and extended scalability. Demonstrating a full set of spatiotemporal primitives with RRAM-based circuits remains an open challenge. By taking inspiration from the neurobiological processes in the human auditory systems, we develop neuromorphic circuits for memristive tonotopic mapping via volatile RRAM devices. Based on a generalized stochastic device-level approach, we demonstrate the main features of signal processing of cochlea, namely logarithmic integration and tonotopic mapping of signals. We also show that our tonotopic classification is suitable for speech recognition. These results support memristive devices for physical processing of temporal signals, thus paving the way for energy efficient, high density neuromorphic systems.

2.
Adv Sci (Weinh) ; : e2405160, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049682

RESUMO

Binocular stereo vision relies on imaging disparity between two hemispherical retinas, which is essential to acquire image information in three dimensional environment. Therefore, retinomorphic electronics with structural and functional similarities to biological eyes are always highly desired to develop stereo vision perception system. In this work, a hemispherical optoelectronic memristor array based on Ag-TiO2 nanoclusters/sodium alginate film is developed to realize binocular stereo vision. All-optical modulation induced by plasmonic thermal effect and optical excitation in Ag-TiO2 nanoclusters is exploited to realize in-pixel image sensing and storage. Wide field of view (FOV) and spatial angle detection are experimentally demonstrated owing to the device arrangement and incident-angle-dependent characteristics in hemispherical geometry. Furthermore, depth perception and motion detection based on binocular disparity have been realized by constructing two retinomorphic memristive arrays. The results demonstrated in this work provide a promising strategy to develop all-optically controlled memristor and promote the future development of binocular vision system with in-sensor architecture.

3.
Nat Commun ; 15(1): 1974, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438350

RESUMO

Artificial Intelligence (AI) is currently experiencing a bloom driven by deep learning (DL) techniques, which rely on networks of connected simple computing units operating in parallel. The low communication bandwidth between memory and processing units in conventional von Neumann machines does not support the requirements of emerging applications that rely extensively on large sets of data. More recent computing paradigms, such as high parallelization and near-memory computing, help alleviate the data communication bottleneck to some extent, but paradigm- shifting concepts are required. Memristors, a novel beyond-complementary metal-oxide-semiconductor (CMOS) technology, are a promising choice for memory devices due to their unique intrinsic device-level properties, enabling both storing and computing with a small, massively-parallel footprint at low power. Theoretically, this directly translates to a major boost in energy efficiency and computational throughput, but various practical challenges remain. In this work we review the latest efforts for achieving hardware-based memristive artificial neural networks (ANNs), describing with detail the working principia of each block and the different design alternatives with their own advantages and disadvantages, as well as the tools required for accurate estimation of performance metrics. Ultimately, we aim to provide a comprehensive protocol of the materials and methods involved in memristive neural networks to those aiming to start working in this field and the experts looking for a holistic approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA