Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 67(5): 3542-3570, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38381650

RESUMO

GPR84 is a putative medium-chain fatty acid receptor that is implicated in regulation of inflammation and fibrogenesis. Studies have indicated that GPR84 agonists may have therapeutic potential in diseases such as Alzheimer's disease, atherosclerosis, and cancer, but there is a lack of quality tool compounds to explore this potential. The fatty acid analogue LY237 (4a) is the most potent GPR84 agonist disclosed to date but has unfavorable physicochemical properties. We here present a SAR study of 4a. Several highly potent agonists were identified with EC50 down to 28 pM, and with SAR generally in excellent agreement with structure-based modeling. Proper incorporation of rings and polar groups resulted in the identification of TUG-2099 (4s) and TUG-2208 (42a), both highly potent GPR84 agonists with lowered lipophilicity and good to excellent solubility, in vitro permeability, and microsomal stability, which will be valuable tools for exploring the pharmacology and therapeutic prospects of GPR84.


Assuntos
Inflamação , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Inflamação/metabolismo , Ácidos Graxos/metabolismo , Relação Estrutura-Atividade
2.
J Innate Immun ; 13(4): 242-256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33789297

RESUMO

Neutrophils express the two formyl peptide receptors (FPR1 and FPR2) and the medium-chain fatty acid receptor GPR84. The FPRs are known to define a hierarchy among neutrophil G protein-coupled receptors (GPCRs), that is, the activated FPRs can either suppress or amplify GPCR responses. In this study, we investigated the position of GPR84 in the FPR-defined hierarchy regarding the activation of neutrophil nicotine adenine dinucleotide phosphate (NADPH) oxidase, an enzyme system designed to generate reactive oxygen species (ROS), which are important regulators in cell signaling and immune regulation. When resting neutrophils were activated by GPR84 agonists, a modest ROS release was induced. However, vast amounts of ROS were induced by these GPR84 agonists in FPR2-desensitized neutrophils, and the response was inhibited not only by a GPR84-specific antagonist but also by an FPR2-specific antagonist. This suggests that the amplified GPR84 agonist response is achieved through a reactivation of desensitized FPR2s. In addition, the GPR84-mediated FPR2 reactivation was independent of ß-arrestin recruitment and sensitive to a protein phosphatase inhibitor. In contrast to FPR2-desensitized cells, FPR1 desensitization primarily resulted in a suppressed GPR84 agonist-induced ROS response, indicating a receptor hierarchical desensitization of GPR84 by FPR1-generated signals. In summary, our data show that the two FPRs in human neutrophils control the NADPH oxidase activity with concomitant ROS production by communicating with GPR84 through different mechanisms. While FPR1 desensitizes GPR84 and by that suppresses the release of ROS induced by GPR84 agonists, amplified ROS release is achieved by GPR84 agonists through reactivation of the desensitized FPR2.


Assuntos
NADPH Oxidases , Receptores de Formil Peptídeo , Receptores de Lipoxinas , Adenina , Humanos , Ativação de Neutrófilo , Neutrófilos , Fosfatos , Receptores Acoplados a Proteínas G
3.
ChemMedChem ; 16(17): 2623-2627, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34270165

RESUMO

The G protein-coupled receptor GPR183/EBI2, which is activated by oxysterols, is a therapeutic target for inflammatory and metabolic diseases where both antagonists and agonists are of potential interest. Using the piperazine diamide core of the known GPR183 antagonist (E)-3-(4-bromophenyl)-1-(4-(4-methoxybenzoyl)piperazin-1-yl)prop-2-en-1-one (NIBR189) as starting point, we identified and sourced 79 structurally related compounds that were commercially available. In vitro screening of this compound collection using a Ca2+ mobilization assay resulted in the identification of 10 compounds with agonist properties. To enable establishment of initial structure-activity relationship trends, these were supplemented with five in-house compounds, two of which were also shown to be GPR183 agonists. Taken together, our findings suggest that the agonist activity of this compound series is dictated by the substitution pattern of one of the two distal phenyl rings, which functions as a molecular efficacy-switch.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G , Humanos , Estrutura Molecular , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA