Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 43(2): 296-299, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29328264

RESUMO

We demonstrate an all-fiber supercontinuum source that generates a continuous spectrum from 1.6 µm to >11 µm with 417 mW on-time average power at 33% duty cycle. By utilizing a master oscillator power amplifier pump with three amplification stages and concatenating solid core ZBLAN, arsenic sulfide, and arsenic selenide fibers, we shift 1550 nm light to ∼4.5 µm, ∼6.5 µm, and >11 µm, respectively. With 69 mW past 7.5 µm, this source provides both high power and broad spectral expansion, while outputting a single fundamental mode.

2.
Appl Opt ; 57(10): 2519-2532, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714236

RESUMO

We generate a supercontinuum (SC) spectrum ranging from 1.57 µm to 12 µm (20 dB bandwidth) with a soft glass fiber cascade consisting of ZrF4-BaF2-LaF3-AlF3-NaF fiber, As2S3 fiber, and As2Se3 fiber pumped by a nanosecond thulium master oscillator power amplifier system. The highest on-time average power generated is 417 mW at 33% duty cycle. We observe a near-diffraction-limit beam quality across the wavelength range from 3 µm to 12 µm, even though the As2Se3 fiber is multimode below 12 µm. Our study also shows that parameters of the As2Se3 fiber, such as numerical aperture, core size, and core/cladding composition, have significant effects on the long wavelength edge of the generated SC spectrum. Our results suggest that the high numerical aperture of 0.76 and low-loss As2Se3/GeAs2Se5 core/cladding material all contribute to broad SC generation in the long-wave infrared spectral region. Also, among our results, 10 µm core diameter selenide fiber yields the best spectral expansion, while the 12 µm core diameter selenide fiber yields the highest output power.

3.
Neuron ; 39(1): 27-41, 2003 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12848930

RESUMO

As a means to automate the three-dimensional histological analysis of brain tissue, we demonstrate the use of femtosecond laser pulses to iteratively cut and image fixed as well as fresh tissue. Cuts are accomplished with 1 to 10 microJ pulses to ablate tissue with micron precision. We show that the permeability, immunoreactivity, and optical clarity of the tissue is retained after pulsed laser cutting. Further, samples from transgenic mice that express fluorescent proteins retained their fluorescence to within microns of the cut surface. Imaging of exogenous or endogenous fluorescent labels down to 100 microm or more below the cut surface is accomplished with 0.1 to 1 nJ pulses and conventional two-photon laser scanning microscopy. In one example, labeled projection neurons within the full extent of a neocortical column were visualized with micron resolution. In a second example, the microvasculature within a block of neocortex was measured and reconstructed with micron resolution.


Assuntos
Artefatos , Técnicas de Preparação Histocitológica/métodos , Lasers , Microscopia Confocal/métodos , Animais , Animais Recém-Nascidos , Feminino , Técnicas de Preparação Histocitológica/instrumentação , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal/instrumentação , Neocórtex/metabolismo , Neocórtex/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA