Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784897

RESUMO

Plant polygalacturonases (PGs) are closely related to cell-separation events during plant growth and development by degrading pectin. Identifying and investigating their diversification of evolution and expression could shed light on research on their function. We conducted sequence, molecular evolution, and gene expression analyses of PG genes in Brassica oleracea. Ninety-nine B. oleracea PGs (BoPGs) were identified and divided into seven clades through phylogenetic analysis. The exon/intron structures and motifs were conserved within, but divergent between, clades. The second conserved domain (GDDC) may be more closely related to the identification of PGs. There were at least 79 common ancestor PGs between Arabidopsis thaliana and B. oleracea. The event of whole genome triplication and tandem duplication played important roles in the rapid expansion of the BoPG gene family, and gene loss may be an important mechanism in the generation of the diversity of BoPGs. By evaluating the expression in five tissues, we found that most of the expressed BoPGs in clades A, B, and E showed ubiquitous expression characteristics, and the expressed BoPGs in clades C, D, and F were mainly responsible for reproduction development. Most of the paralogous gene pairs (76.2%) exhibited divergent expression patterns, indicating that they may have experienced neofunctionalization or subfunctionalization. The cis-elements analysis showed that up to 96 BoPGs contained the hormone response elements in their promoters. In conclusion, our comparative analysis may provide a valuable data foundation for the further functional analysis of BoPGs during the development of B. oleracea.


Assuntos
Brassica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas/genética , Poligalacturonase/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Sequência de Bases , Brassica/enzimologia , Sequência Conservada/genética , Evolução Molecular , Duplicação Gênica/genética , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/classificação , Poligalacturonase/classificação , Homologia de Sequência do Ácido Nucleico
2.
Phytochemistry ; 181: 112590, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33232864

RESUMO

Modern strawberry production is often threatened by microbe pathogens. Anthracnose is among the most prominent fungal disease caused mainly by Colletotrichum gloeosporioides and leads to large-scale losses both in quality and yield. Little is known regarding the mechanisms underlying the genetics in the strawberry-C. gloeosporioides interaction. In the current research, a wild accession 'Fragaria nilgerrensis' is used as a resistant model to study the roles of terpenoid and terpene genes in leaf response to C. gloeosporioides. We found that several terpenoids and terpene genes were up-regulated at early time points after challenged with C. gloeosporioides. Among the metabolites detected, sesquiterpenes were the most significantly accumulated compounds, increasing up to ~12-fold at 18 h post infection (hpi), followed by monoterpenes which showed a slight increase upon infection. Consistently, the time-resolved transcriptome data revealed that genes pertaining to terpenoid metabolism were rapidly up-regulated and co-expressed with signaling pathway genes relevant to defense response. Notably, quantitative real-time PCR confirmed that the expression of five terpene synthase genes (TPS) were greatly enhanced, by a factor of one to three orders of magnitude at 3-6 hpi. Our results reveal a possible link between rapidly induced terpenoid metabolism and the autoimmunity underlying anthracnose resistance in a wild strawberry species.


Assuntos
Colletotrichum , Fragaria , Fragaria/genética , Doenças das Plantas , Terpenos
3.
Plants (Basel) ; 9(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327497

RESUMO

Flowering is the first committed step of plant sexual reproduction. While the developing flower is a strong sink requiring large quantity of sugars from photosynthetic source tissues, this process is under-temper-spatially controlled via hormone signaling pathway and nutrient availability. Sugar transporters SUT/SUC and SWEET mediate sugars movement across membranes and play a significant role in various physiological processes, including reproductive organ development. In Petunia axillaris, a model ornamental plant, 5 SUT/SUC and 36 SWEET genes are identified in the current version of the genome. Analysis of their gene structure and chromosomal locations reveal that SWEET family is moderately expanded. Most of the transporter genes are abundantly expressed in the flower than in other organs. During the five flower developmental stages, transcript levels of PaSUT1, PaSUT3, PaSWEET13c, PaSWEET9a, PaSWEET1d, PaSWEET5a and PaSWEET14a increase with the maturation of the flower and reach their maximum in the fully open flowers. PaSWEET9c, the nectar-specific PhNEC1 orthologous, is expressed in matured and fully opened flowers. Moreover, determination of sugar concentrations and phytohormone dynamics in flowers at the five developmental stages shows that glucose is the predominant form of sugar in young flowers at the early stage but depletes at the later stage, whereas sucrose accumulates only in maturated flowers prior to the corolla opening. On the other hand, GA3 content and to a less extent IAA and zeatin decreases with the flower development; however, JA, SA and ABA display a remarkable peak at mid- or later flower developmental stage.

4.
Plant Physiol Biochem ; 157: 169-184, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33120109

RESUMO

The NAM, ATAF1/2, and CUC2 form a huge plant-specific gene family of NAC TFs that are involved in the growth, development, and regulation of biotic and abiotic stress responses. Although the draft genome of longan (Dimocarpus longan Lour.) has been published, however the comprehensive data regarding the functions, evolution, and expression patterns of the NAC family are still unavailable. In this study, a comprehensive analysis of the NAC transcription factor family in longan was performed, and a total of 114 NAC genes were found. We investigated the NAC gene family exploring the phylogeny, domain conservation, intron/exon, motifs, cis-regulatory elements, protein-protein interaction, and expression profiles of RNA-seq samples in different tissues and early somatic embryogenesis of longan. Phylogenetic analysis showed that the genes with similar gene structure and motif distribution were clustered in the same group. Cis-element identification indicates the possible role of NAC genes in biological and physiological processes. Protein-protein interaction identified the DlNACs homologous with Arabidopsis proteins. We further investigated the expression pattern of DlNAC genes in different tissues (pulp, stem, large fruit, young fruit, and flower) during somatic embryogenesis at embryogenic callus (EC), incomplete compact pro-embryogenic cultures (ICpEC), and globular embryos (GE) stages. The qRT-PCR results showed that the DlNAC genes were expressed higher at EC and GE stage compared with ICpEC stage. In conclusion, our results provide insight into the evolution, diversity, and characterization of NAC genes in the longan and provide a base for understanding their biological roles and molecular mechanisms in plants.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Técnicas de Embriogênese Somática de Plantas , Sapindaceae/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
5.
PLoS One ; 14(10): e0223519, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31644543

RESUMO

Gerbera hybrida is one of the top five cut flowers across the world, it is host for the root rot causing parasite called Phytophthora cryptogea. In this study, plantlets of healthy and root-rot pathogen-infected G. hybrida were used as plant materials for transcriptome analyis using high-throughput Illumina sequencing technique. A total 108,135 unigenes were generated with an average length of 727 nt and N50 equal to 1274 nt out of which 611 genes were identified as DEGs by DESeq analyses. Among DEGs, 228 genes were up-regulated and 383 were down-regulated. Through this annotated data and Kyoto encyclopedia of genes and genomes (KEGG), molecular interaction network, transcripts accompanying with tyrosine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, phenylpropanoid and flavonoid biosynthesis, and plant hormone signal transduction pathways were thoroughly observed considering expression pattern. The involvement of DEGs in tyrosine metabolism pathway was validated by real-time qPCR. We found that genes related with tyrosine metabolism were activated and up-regulated against stress response. The expression of GhTAT, GhAAT, GhHPD, GhHGD and GhFAH genes was significantly increased in the leaves and petioles at four and six dpi (days post inoculation) as compared with control. The study predicts the gene sequences responsible for the tyrosine metabolism pathway and its responses against root-rot resistance in gerbera plant. In future, identification of such genes is necessary for the better understanding of rot resistance mechanism and to develop a root rot resistance strategy for ornamental plants.


Assuntos
Asteraceae/genética , Asteraceae/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas , Análise de Sequência de RNA , Tirosina/metabolismo , Aminoácidos/metabolismo , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Genótipo , Anotação de Sequência Molecular , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA