Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 145(2): 024504, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27421417

RESUMO

The atomic and electronic dynamics in the topological insulator (TI) Bi2Te3 under strong photoexcitation were characterized with time-resolved electron diffraction and time-resolved mid-infrared spectroscopy. Three-dimensional TIs characterized as bulk insulators with an electronic conduction surface band have shown a variety of exotic responses in terms of electronic transport when observed under conditions of applied pressure, magnetic field, or circularly polarized light. However, the atomic motions and their correlation between electronic systems in TIs under strong photoexcitation have not been explored. The artificial and transient modification of the electronic structures in TIs via photoinduced atomic motions represents a novel mechanism for providing a comparable level of bandgap control. The results of time-domain crystallography indicate that photoexcitation induces two-step atomic motions: first bismuth and then tellurium center-symmetric displacements. These atomic motions in Bi2Te3 trigger 10% bulk bandgap narrowing, which is consistent with the time-resolved mid-infrared spectroscopy results.

2.
ACS Nano ; 7(5): 4105-10, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23560470

RESUMO

We demonstrate the controllable local manipulation of the Dirac surface state in a topological insulator, Bi2Te2Se, which has suppressed bulk carrier density. Using scanning tunneling microscopy/spectroscopy under magnetic fields, we observe Landau levels of the Dirac surface state in the conductance spectra. The Landau levels start to shift in their energy once the bias voltage between the tip and the sample exceeds a threshold value. The amount of shift depends on the history of bias ramping. As a result, conductance spectra show noticeable hysteresis, giving rise to a memory effect. The conductance images exhibit spatially inhomogeneous patterns which can also be controlled by the bias voltage in a reproducible way. On the basis of these observations, we argue that the memory effect is associated with the tip-induced local charging effect which is pinned by the defect-generated random potential. Our study opens up a new avenue to controlling the topological surface state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA