Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Pediatr Blood Cancer ; 71(4): e30891, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311802

RESUMO

BACKGROUND: Pegaspargase is a therapeutic enzyme that is utilized in treatment regimens targeting pediatric acute lymphoblastic leukemia. However, many patients experience hypersensitivity reactions, requiring discontinuation of the therapy. Historically, this necessitated switching to an alternative form of the drug, most commonly asparaginase Erwinia chrysanthemi; however, in recent years this was difficult due to drug shortages and eventually commercial discontinuation. We report here our experience performing pegaspargase desensitizations in patients with prior hypersensitivity reactions. PROCEDURE: Patients with a clinical hypersensitivity reaction to pegaspargase were identified. When due for their next dose, patients were admitted to the pediatric intensive care unit, bone marrow transplant unit, or oncology unit, and underwent desensitization utilizing a rigorous premedication and multistep dilution-based protocol. Serum asparaginase activity levels were drawn after desensitization to assess for therapeutic levels of enzyme activity. RESULTS: We identified 11 patients who underwent a total of 33 desensitizations to pegaspargase and calaspargase pegol-mknl. No patients experienced clinically significant hypersensitivity reactions necessitating stopping the infusion, nor administration of rescue medications. All serum asparaginase activity levels collected demonstrated enzyme activity levels above predefined therapeutic thresholds. Cost analysis revealed substantial savings when patients received asparaginase desensitization over the now commercially available asparaginase E. chrysanthemi (recombinant) rywn. CONCLUSIONS: Performing desensitization to pegaspargase in the pediatric acute lymphoblastic leukemia population is feasible, safe, and effective. It is financially advantageous over available alternative approaches, and requires fewer injections and presentations to care.


Assuntos
Antineoplásicos , Hipersensibilidade a Drogas , Erwinia , Hipersensibilidade , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Asparaginase/efeitos adversos , Antineoplásicos/uso terapêutico , Hipersensibilidade a Drogas/etiologia , Hipersensibilidade a Drogas/tratamento farmacológico , Polietilenoglicóis/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
2.
Neuropsychopharmacology ; 43(10): 2000-2008, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29497166

RESUMO

Novel molecular targets are needed to develop new medications for the treatment of cocaine addiction. Here we investigated a role for glucagon-like peptide-1 (GLP-1) receptors in the reinstatement of cocaine-seeking behavior, an animal model of relapse. We showed that peripheral administration of the GLP-1 receptor agonist exendin-4 dose dependently reduced cocaine seeking in rats at doses that did not affect ad libitum food intake, meal patterns or body weight. We also demonstrated that systemic exendin-4 penetrated the brain where it putatively bound receptors on both neurons and astrocytes in the ventral tegmental area (VTA). The effects of systemic exendin-4 on cocaine reinstatement were attenuated in rats pretreated with intra-VTA infusions of the GLP-1 receptor antagonist exendin-(9-39), indicating that the suppressive effects of systemic exendin-4 on cocaine seeking were due, in part, to activation of GLP-1 receptors in the VTA. Consistent with these effects, infusions of exendin-4 directly into the VTA reduced cocaine seeking. Finally, extinction following cocaine self-administration was associated with decreased preproglucagon mRNA expression in the caudal brainstem. Thus, our study demonstrated a novel role for GLP-1 receptors in the reinstatement of cocaine-seeking behavior and identified behaviorally relevant doses of a GLP-1 receptor agonist that selectively reduced cocaine seeking and did not produce adverse effects.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Comportamento de Procura de Droga/efeitos dos fármacos , Exenatida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Exenatida/administração & dosagem , Exenatida/farmacocinética , Masculino , Neurônios/efeitos dos fármacos , Proglucagon/biossíntese , Proglucagon/genética , Ratos , Ratos Sprague-Dawley , Recidiva , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo
3.
Neuropsychopharmacology ; 41(7): 1917-28, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26675243

RESUMO

Cocaine addiction continues to be a significant public health problem for which there are currently no effective FDA-approved treatments. Thus, there is a clear need to identify and develop novel pharmacotherapies for cocaine addiction. Recent evidence indicates that activation of glucagon-like peptide-1 (GLP-1) receptors in the ventral tegmental area (VTA) reduces intake of highly palatable food. As the neural circuits and neurobiological mechanisms underlying drug taking overlap to some degree with those regulating food intake, these findings suggest that activation of central GLP-1 receptors may also attenuate cocaine taking. Here, we show that intra-VTA administration of the GLP-1 receptor agonist exendin-4 (0.05 µg) significantly reduced cocaine, but not sucrose, self-administration in rats. We also demonstrate that cocaine taking is associated with elevated plasma corticosterone levels and that systemic infusion of cocaine activates GLP-1-expressing neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus that projects monosynaptically to the VTA. To determine the potential mechanisms by which cocaine activates NTS GLP-1-expressing neurons, we microinjected corticosterone (0.5 µg) directly into the hindbrain fourth ventricle. Intraventricular corticosterone attenuated cocaine self-administration and this effect was blocked in animals pretreated with the GLP-1 receptor antagonist exendin-(9-39) (10 µg) in the VTA. Finally, AAV-shRNA-mediated knockdown of VTA GLP-1 receptors was sufficient to augment cocaine self-administration. Taken together, these findings indicate that increased activation of NTS GLP-1-expressing neurons by corticosterone may represent a homeostatic response to cocaine taking, thereby reducing the reinforcing efficacy of cocaine. Therefore, central GLP-1 receptors may represent a novel target for cocaine addiction pharmacotherapies.


Assuntos
Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Reforço Psicológico , Área Tegmentar Ventral/efeitos dos fármacos , Anestésicos Locais/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Corticosterona/sangue , Corticosterona/farmacologia , Exenatida , Quarto Ventrículo/efeitos dos fármacos , Quarto Ventrículo/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Autoadministração , Peçonhas/farmacologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA