Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(12): e2306818121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489386

RESUMO

Cells often migrate on curved surfaces inside the body, such as curved tissues, blood vessels, or highly curved protrusions of other cells. Recent in vitro experiments provide clear evidence that motile cells are affected by the curvature of the substrate on which they migrate, preferring certain curvatures to others, termed "curvotaxis." The origin and underlying mechanism that gives rise to this curvature sensitivity are not well understood. Here, we employ a "minimal cell" model which is composed of a vesicle that contains curved membrane protein complexes, that exert protrusive forces on the membrane (representing the pressure due to actin polymerization). This minimal-cell model gives rise to spontaneous emergence of a motile phenotype, driven by a lamellipodia-like leading edge. By systematically screening the behavior of this model on different types of curved substrates (sinusoidal, cylinder, and tube), we show that minimal ingredients and energy terms capture the experimental data. The model recovers the observed migration on the sinusoidal substrate, where cells move along the grooves (minima), while avoiding motion along the ridges. In addition, the model predicts the tendency of cells to migrate circumferentially on convex substrates and axially on concave ones. Both of these predictions are verified experimentally, on several cell types. Altogether, our results identify the minimization of membrane-substrate adhesion energy and binding energy between the membrane protein complexes as key players of curvotaxis in cell migration.


Assuntos
Actinas , Proteínas de Membrana , Movimento Celular , Fenômenos Físicos , Fenótipo , Actinas/metabolismo
2.
J Cell Sci ; 136(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37497740

RESUMO

One ubiquitous cellular structure for performing various tasks, such as spreading and migration over external surfaces, is the sheet-like protrusion called a lamellipodium, which propels the leading edge of the cell. Despite the detailed knowledge about the many components of this cellular structure, it is not yet fully understood how these components self-organize spatiotemporally to form lamellipodia. We review here recent theoretical works where we have demonstrated that membrane-bound protein complexes that have intrinsic curvature and recruit the protrusive forces of the cytoskeleton result in a simple, yet highly robust, organizing feedback mechanism that organizes the cytoskeleton and the membrane. This self-organization mechanism accounts for the formation of flat lamellipodia at the leading edge of cells spreading over adhesive substrates, allowing for the emergence of a polarized, motile 'minimal cell' model. The same mechanism describes how lamellipodia organize to drive robust engulfment of particles during phagocytosis and explains in simple physical terms the spreading and migration of cells over fibers and other curved surfaces. This Review highlights that despite the complexity of cellular composition, there might be simple general physical principles that are utilized by the cell to drive cellular shape dynamics.


Assuntos
Citoesqueleto , Pseudópodes , Movimento Celular , Pseudópodes/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo
3.
Sensors (Basel) ; 24(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39338837

RESUMO

Supported lipid bilayers (SLBs) are low-complexity biomimetic membranes, serving as popular experimental platforms to study membrane organization and lipid transfer, membrane uptake of nanoparticles and biomolecules, and many other processes. Quartz crystal microbalance with dissipation monitoring has been utilized to probe the influence of several parameters on the quality of SLBs formed on Au- and SiO2-coated sensors. The influence of the aqueous medium (i.e., buffer type) and the adsorption temperature, above and below the lipid melting point, is neatly explored for SLBs of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine formed by a solvent exchange. Below the lipid melting temperature, quality variations are observed upon the formation on Au and SiO2 surfaces, with the SLBs being more homogeneous for the latter. We further investigate how the buffer affects the detection of lipid melting in SLBs, a transition that necessitates high-sensitivity and time-consuming surface-sensitive techniques to be detected.

4.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901780

RESUMO

Small cellular particles (SCPs) are being considered for their role in cell-to-cell communication. We harvested and characterized SCPs from spruce needle homogenate. SCPs were isolated by differential ultracentrifugation. They were imaged by scanning electron microscope (SEM) and cryogenic transmission electron microscope (cryo TEM), assessed for their number density and hydrodynamic diameter by interferometric light microscopy (ILM) and flow cytometry (FCM), total phenolic content (TPC) by UV-vis spectroscopy, and terpene content by gas chromatography-mass spectrometry (GC-MS). The supernatant after ultracentrifugation at 50,000× g contained bilayer-enclosed vesicles whereas in the isolate we observed small particles of other types and only a few vesicles. The number density of cell-sized particles (CSPs) (larger than 2 µm) and meso-sized particles (MSPs) (cca 400 nm-2 µm) was about four orders of magnitude lower than the number density of SCPs (sized below 500 nm). The average hydrodynamic diameter of SCPs measured in 10,029 SCPs was 161 ± 133 nm. TCP decreased considerably due to 5-day aging. Volatile terpenoid content was found in the pellet after 300× g. The above results indicate that spruce needle homogenate is a source of vesicles to be explored for potential delivery use.


Assuntos
Picea , Terpenos/análise , Microscopia , Citometria de Fluxo , Cromatografia Gasosa-Espectrometria de Massas
5.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834843

RESUMO

The preparation of autologous platelet and extracellular vesicle-rich plasma (PVRP) has been explored in many medical fields with the aim to benefit from its healing potential. In parallel, efforts are being invested to understand the function and dynamics of PVRP that is complex in its composition and interactions. Some clinical evidence reveals beneficial effects of PVRP, while some report that there were no effects. To optimize the preparation methods, functions and mechanisms of PVRP, its constituents should be better understood. With the intention to promote further studies of autologous therapeutic PVRP, we performed a review on some topics regarding PVRP composition, harvesting, assessment and preservation, and also on clinical experience following PVRP application in humans and animals. Besides the acknowledged actions of platelets, leukocytes and different molecules, we focus on extracellular vesicles that were found abundant in PVRP.


Assuntos
Plasma Rico em Plaquetas , Humanos , Animais , Plaquetas , Cicatrização , Leucócitos
6.
PLoS Biol ; 17(10): e3000457, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600188

RESUMO

Migratory cells use distinct motility modes to navigate different microenvironments, but it is unclear whether these modes rely on the same core set of polarity components. To investigate this, we disrupted actin-related protein 2/3 (Arp2/3) and the WASP-family verprolin homologous protein (WAVE) complex, which assemble branched actin networks that are essential for neutrophil polarity and motility in standard adherent conditions. Surprisingly, confinement rescues polarity and movement of neutrophils lacking these components, revealing a processive bleb-based protrusion program that is mechanistically distinct from the branched actin-based protrusion program but shares some of the same core components and underlying molecular logic. We further find that the restriction of protrusion growth to one site does not always respond to membrane tension directly, as previously thought, but may rely on closely linked properties such as local membrane curvature. Our work reveals a hidden circuit for neutrophil polarity and indicates that cells have distinct molecular mechanisms for polarization that dominate in different microenvironments.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Actinas/genética , Polaridade Celular/genética , Quimiotaxia/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Fenômenos Biomecânicos , Sistemas CRISPR-Cas , Adesão Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Polaridade Celular/efeitos dos fármacos , Fatores Quimiotáticos/farmacologia , Quimiotaxia/efeitos dos fármacos , Edição de Genes , Regulação da Expressão Gênica , Células HEK293 , Células HL-60 , Humanos , Microscopia de Força Atômica , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Transdução de Sinais , Propriedades de Superfície , Família de Proteínas da Síndrome de Wiskott-Aldrich/deficiência
7.
Soft Matter ; 19(1): 31-43, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36472164

RESUMO

Phagocytosis is the process of engulfment and internalization of comparatively large particles by cells, and plays a central role in the functioning of our immune system. We study the process of phagocytosis by considering a simplified coarse grained model of a three-dimensional vesicle, having a uniform adhesion interaction with a rigid particle, and containing curved membrane-bound protein complexes or curved membrane nano-domains, which in turn recruit active cytoskeletal forces. Complete engulfment is achieved when the bending energy cost of the vesicle is balanced by the gain in the adhesion energy. The presence of curved (convex) proteins reduces the bending energy cost by self-organizing with a higher density at the highly curved leading edge of the engulfing membrane, which forms the circular rim of the phagocytic cup that wraps around the particle. This allows the engulfment to occur at much smaller adhesion strength. When the curved membrane-bound protein complexes locally recruit actin polymerization machinery, which leads to outward forces being exerted on the membrane, we found that engulfment is achieved more quickly and at a lower protein density. We consider spherical and non-spherical particles and found that non-spherical particles are more difficult to engulf in comparison to the spherical particles of the same surface area. For non-spherical particles, the engulfment time crucially depends on the initial orientation of the particles with respect to the vesicle. Our model offers a mechanism for the spontaneous self-organization of the actin cytoskeleton at the phagocytic cup, in good agreement with recent high-resolution experimental observations.


Assuntos
Actinas , Proteínas de Membrana , Actinas/metabolismo , Fagocitose , Citoesqueleto/metabolismo , Modelos Teóricos
8.
Eur Phys J E Soft Matter ; 45(7): 62, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35876913

RESUMO

It is well known that positions of topological defects (TDs) in liquid crystals can be manipulated experimentally by locally distorting the liquid crystalline (LC) order, as for example by melting induced by optical tweezers. In this work, we study numerically the nematic ordering profiles and the corresponding topological defect configurations in thin nematic liquid crystalline shells controlled by imposed local distortion of LC order. We demonstrate that within curved LC films such manipulations could be strongly affected by local Gaussian curvature if it exhibits strong spatial variations. We use mesoscopic approach in which the shell geometry and LC orientational order are described by curvature of the surface and nematic order parameter tensor. For illustration purposes, we consider LC shells exhibiting spherical topology. We show that on increasing prolateness of shells, which imposes spatially inhomogeneous Gaussian curvature, TDs are relatively strongly "glued" to a local Gaussian curvature.

9.
Eur Phys J E Soft Matter ; 45(9): 79, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36125628

RESUMO

Experiments show that elastic constants of lipid bilayers vary greatly during the liquid-to-gel phase transition. This fact forms the cornerstone of the Heimburg-Jackson model of soliton propagation along membranes of axons, in which the action potential is accompanied by a traveling phase transition. However, the dispersion term, which is crucial for the existence of solitons, is added to the Heimburg-Jackson model ad hoc and set to fit experimental observations. In the present paper, we aim to consolidate this view with continuous membrane mechanics. Using literature data, we show that the compression modulus of a DPPC membrane is smaller by approximately an order of magnitude during phase transition. With a series expansion of the compression modulus, we write the action of a membrane and solve the corresponding wave equation analytically using an Exp-function method. We confirm that membrane solitons with speeds around 200 m/s are possible with amplitudes inversely proportional to their speed. We conclude that dispersion necessary for existence of solitons is directly related to a membrane's bending properties, offering a possible explanation for h. Our findings are in general agreement with existing literature and give insight into a general mechanism of wave propagation in membranes close to transition.


Assuntos
Bicamadas Lipídicas , Membrana Celular , Pressão
10.
Platelets ; 33(4): 592-602, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34384320

RESUMO

In order to prepare optimal platelet and extracellular vesicle (EV)-rich plasma for the treatment of chronic temporal bone inflammation, we studied effects of centrifugation parameters on redistribution of blood constituents in blood samples of 23 patients and 20 volunteers with no record of disease. Concentrations of blood cells and EVs were measured by flow cytometry. Sample content was inspected by scanning electron microscopy. A mathematical model was constructed to interpret the experimental results. The observed enrichment of plasma in platelets and EVs after a single spin of blood depended on the erythrocyte sedimentation rate, thereby indicating the presence of a flow of plasma that carried platelets and EVs in the direction opposite to settling of erythrocytes. Prolonged handling time correlated with the decrease of concentration of platelets and larger EVs in platelet and EV-rich plasma (PVRP), R = -0.538, p = 0.003, indicating cell fragmentation during the processing of samples. In further centrifugation of the obtained plasma, platelet and EV enrichment depended on the average distance of the sample from the centrifuge rotor axis. Based on the agreement of the model predictions with observations, we propose the centrifugation protocol optimal for platelet and EV enrichment and recovery in an individual sample, adjusted to the dimensions of the centrifuge rotor, volume of blood and erythrocyte sedimentation rate.[Figure: see text].


Assuntos
Plaquetas , Vesículas Extracelulares , Eritrócitos , Citometria de Fluxo/métodos , Humanos , Plasma
11.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955586

RESUMO

We studied the efficiency of three culture series of the microalgae Phaeodactylum tricornutum (P. tricornutum) and bacteria Thalassospira sp. (axenic microalgae, bacterial culture and co-culture of the two) in removing bisphenols (BPs) from their growth medium. Bacteria were identified by 16S ribosomal RNA polymerase chain reaction (16S rRNA PCR). The microorganism growth rate was determined by flow cytometry. Cultures and isolates of their small cellular particles (SCPs) were imaged by scanning electron microscopy (SEM) and cryogenic transmission electron microscopy (Cryo-TEM). BPs were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). Our results indicate that some organisms may have the ability to remove a specific pollutant with high efficiency. P. tricornutum in axenic culture and in mixed culture removed almost all (more than 99%) of BPC2. Notable differences in the removal of 8 out of 18 BPs between the axenic, mixed and bacterial cultures were found. The overall removals of BPs in axenic P. tricornutum, mixed and bacterial cultures were 11%, 18% and 10%, respectively. Finding the respective organisms and creating microbe societies seems to be key for the improvement of wastewater treatment. As a possible mediating factor, numerous small cellular particles from all three cultures were detected by electron microscopy. Further research on the mechanisms of interspecies communication is needed to advance the understanding of microbial communities at the nano-level.


Assuntos
Diatomáceas , Microalgas , Rhodospirillaceae , Bactérias/genética , Meios de Cultivo Condicionados , Diatomáceas/genética , Cromatografia Gasosa-Espectrometria de Massas , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem
12.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555442

RESUMO

Small particles in natural sources are a subject of interest for their potential role in intercellular, inter-organism, and inter-species interactions, but their harvesting and assessment present a challenge due to their small size and transient identity. We applied a recently developed interferometric light microscopy (ILM) to assess the number density and hydrodynamic radius (Rh) of isolated small cellular particles (SCPs) from blood preparations (plasma and washed erythrocytes) (B), spruce needle homogenate (S), suspension of flagellae of microalgae Tetraselmis chuii (T), conditioned culture media of microalgae Phaeodactylum tricornutum (P), and liposomes (L). The aliquots were also assessed by flow cytometry (FCM), dynamic light scattering (DLS), ultraviolet-visible spectrometry (UV-vis), and imaging by cryogenic transmission electron microscopy (cryo-TEM). In Rh, ILM showed agreement with DLS within the measurement error in 10 out of 13 samples and was the only method used here that yielded particle density. Cryo-TEM revealed that representative SCPs from Tetraselmis chuii flagella (T) did not have a globular shape, so the interpretation by Rh of the batch methods was biased. Cryo-TEM showed the presence of thin filaments in isolates from Phaeodactylum tricornutum conditioned culture media (P), which provides an explanation for the considerably larger Rh obtained by batch methods than the sizes of particles observed by cryo-TEM images. ILM proved convenient for assessment of number density and Rh of SCPs in blood preparations (e.g., plasma); therefore, its use in population and clinical studies is indicated.


Assuntos
Lipossomos , Lipossomos/química , Meios de Cultivo Condicionados , Microscopia Eletrônica de Transmissão , Microscopia Crioeletrônica , Difusão Dinâmica da Luz , Tamanho da Partícula
13.
Biophys J ; 120(20): 4418-4428, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34506775

RESUMO

It is known that giant vesicles undergo dynamic morphological changes when exposed to a detergent. The solubilization process may take multiple pathways. In this work, we identify lipid vesicle shape dynamics before the solubilization of 1,2-dioleoyl-sn-glycero-3-phosphocholine giant vesicles with Triton X-100 (TR) detergent. The violent lipid vesicle dynamics was observed with laser confocal scanning microscopy and was qualitatively explained via a numerical simulation. A three-dimensional Monte Carlo scheme was constructed that emulated the nonequilibrium conditions at the beginning stages of solubilization, accounting for a gradual addition of TR detergent molecules into the lipid bilayers. We suggest that the main driving factor for morphology change in lipid vesicles is the associative tendency of the TR molecules, which induces spontaneous curvature of the detergent inclusions, an intrinsic consequence of their molecular shape. The majority of the observed lipid vesicle shapes in the experiments were found to correspond very well to the numerically calculated shapes in the phase space of possible solutions. The results give an insight into the early stages of lipid vesicle solubilization by amphiphilic molecules, which is nonequilibrium in nature and very difficult to study.


Assuntos
Bicamadas Lipídicas , Fosfatidilcolinas , Octoxinol
14.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948201

RESUMO

The adhesion of lipid vesicles to a rigid flat surface is investigated. We examine the influence of the membrane spontaneous curvature, adhesion strength, and the reduced volume on the stability and shape transformations of adhered vesicles. The minimal strength of the adhesion necessary to stabilize the shapes of adhered vesicles belonging to different shape classes is determined. It is shown that the budding of an adhered vesicle may be induced by the change of the adhesion strength. The importance of the free vesicle shape for its susceptibility to adhesion is discussed.


Assuntos
Lipídeos/química , Membranas/química
15.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681757

RESUMO

The molecular details of the passive water flux across the hydrophobic membrane interior are still a matter of debate. One of the postulated mechanisms is the spontaneous, water-filled pore opening, which facilitates the hydrophilic connection between aqueous phases separated by the membrane. In the paper, we provide experimental evidence showing that the spontaneous lipid pore formation correlates with the membrane mechanics; hence, it depends on the composition of the lipid bilayer and the concentration of the osmotically active compound. Using liposomes as an experimental membrane model, osmotically induced water efflux was measured with the stopped-flow technique. Shapes of kinetic curves obtained at low osmotic pressure differences are interpreted in terms of two events: the lipid pore opening and water flow across the aqueous channel. The biological significance of the dependence of the lipid pore formation on the concentration difference of an osmotically active compound was illustrated by the demonstration that osmotically driven water flow can be accompanied by the dissipation of the pH gradient. The application of the Helfrich model to describe the probability of lipid pore opening was validated by demonstrating that the probability of pore opening correlates with the membrane bending rigidity. The correlation was determined by experimentally derived bending rigidity coefficients and probabilities of lipid pores opening.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Água/metabolismo , Ovos , Concentração de Íons de Hidrogênio , Cinética , Luz , Lipossomos/química , Lisofosfatidilcolinas/química , Lipídeos de Membrana/química , Modelos Químicos , Pressão Osmótica , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Prótons , Água/química
16.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652934

RESUMO

Biological membranes are composed of isotropic and anisotropic curved nanodomains. Anisotropic membrane components, such as Bin/Amphiphysin/Rvs (BAR) superfamily protein domains, could trigger/facilitate the growth of membrane tubular protrusions, while isotropic curved nanodomains may induce undulated (necklace-like) membrane protrusions. We review the role of isotropic and anisotropic membrane nanodomains in stability of tubular and undulated membrane structures generated or stabilized by cyto- or membrane-skeleton. We also describe the theory of spontaneous self-assembly of isotropic curved membrane nanodomains and derive the critical concentration above which the spontaneous necklace-like membrane protrusion growth is favorable. We show that the actin cytoskeleton growth inside the vesicle or cell can change its equilibrium shape, induce higher degree of segregation of membrane nanodomains or even alter the average orientation angle of anisotropic nanodomains such as BAR domains. These effects may indicate whether the actin cytoskeleton role is only to stabilize membrane protrusions or to generate them by stretching the vesicle membrane. Furthermore, we demonstrate that by taking into account the in-plane orientational ordering of anisotropic membrane nanodomains, direct interactions between them and the extrinsic (deviatoric) curvature elasticity, it is possible to explain the experimentally observed stability of oblate (discocyte) shapes of red blood cells in a broad interval of cell reduced volume. Finally, we present results of numerical calculations and Monte-Carlo simulations which indicate that the active forces of membrane skeleton and cytoskeleton applied to plasma membrane may considerably influence cell shape and membrane budding.


Assuntos
Forma Celular , Citoesqueleto/metabolismo , Eritrócitos/citologia , Microdomínios da Membrana/metabolismo , Simulação por Computador , Elasticidade , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Método de Monte Carlo
17.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34769289

RESUMO

The research presented herein follows an urgent global need for the development of novel surface engineering techniques that would allow the fabrication of next-generation cardiovascular stents, which would drastically reduce cardiovascular diseases (CVD). The combination of hydrothermal treatment (HT) and treatment with highly reactive oxygen plasma (P) allowed for the formation of an oxygen-rich nanostructured surface. The morphology, surface roughness, chemical composition and wettability of the newly prepared oxide layer on the Ti substrate were characterized by scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) analysis. The alteration of surface characteristics influenced the material's bio-performance; platelet aggregation and activation was reduced on surfaces treated by hydrothermal treatment, as well as after plasma treatment. Moreover, it was shown that surfaces treated by both treatment procedures (HT and P) promoted the adhesion and proliferation of vascular endothelial cells, while at the same time inhibiting the adhesion and proliferation of vascular smooth muscle cells. The combination of both techniques presents a novel approach for the fabrication of vascular implants, with superior characteristics.


Assuntos
Células Endoteliais/citologia , Músculo Liso Vascular/citologia , Plasma/química , Titânio/química , Adesão Celular , Linhagem Celular , Proliferação de Células , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanoestruturas , Tamanho da Partícula , Stents , Propriedades de Superfície , Molhabilidade
18.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884574

RESUMO

Extracellular vesicles (EVs) are gaining increasing amounts of attention due to their potential use in diagnostics and therapy, but the poor reproducibility of the studies that have been conducted on these structures hinders their breakthrough into routine practice. We believe that a better understanding of EVs stability and methods to control their integrity are the key to resolving this issue. In this work, erythrocyte EVs (hbEVs) were isolated by centrifugation from suspensions of human erythrocytes that had been aged in vitro. The isolate was characterised by scanning (SEM) and cryo-transmission electron microscopy (cryo-TEM), flow cytometry (FCM), dynamic/static light scattering (LS), protein electrophoresis, and UV-V spectrometry. The hbEVs were exposed to various conditions (pH (4-10), osmolarity (50-1000 mOsm/L), temperature (15-60 °C), and surfactant Triton X-100 (10-500 µM)). Their stability was evaluated by LS by considering the hydrodynamic radius (Rh), intensity of scattered light (I), and the shape parameter (ρ). The morphology of the hbEVs that had been stored in phosphate-buffered saline with citrate (PBS-citrate) at 4 °C remained consistent for more than 6 months. A change in the media properties (50-1000 mOsm/L, pH 4-10) had no significant effect on the Rh (=100-130 nm). At pH values below 6 and above 8, at temperatures above 45 °C, and in the presence of Triton X-100, hbEVs degradation was indicated by a decrease in I of more than 20%. Due to the simple preparation, homogeneous morphology, and stability of hbEVs under a wide range of conditions, they are considered to be a suitable option for EV reference material.


Assuntos
Difusão Dinâmica da Luz/métodos , Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Microscopia Eletrônica/métodos , Eritrócitos/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Humanos
19.
Entropy (Basel) ; 22(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-33286823

RESUMO

The electric double layer (EDL) is an important phenomenon that arises in systems where a charged surface comes into contact with an electrolyte solution. In this work we describe the generalization of classic Poisson-Boltzmann (PB) theory for point-like ions by taking into account orientational ordering of water molecules. The modified Langevin Poisson-Boltzmann (LPB) model of EDL is derived by minimizing the corresponding Helmholtz free energy functional, which includes also orientational entropy contribution of water dipoles. The formation of EDL is important in many artificial and biological systems bound by a cylindrical geometry. We therefore numerically solve the modified LPB equation in cylindrical coordinates, determining the spatial dependencies of electric potential, relative permittivity and average orientations of water dipoles within charged tubes of different radii. Results show that for tubes of a large radius, macroscopic (net) volume charge density of coions and counterions is zero at the geometrical axis. This is attributed to effective electrolyte charge screening in the vicinity of the inner charged surface of the tube. For tubes of small radii, the screening region extends into the whole inner space of the tube, leading to non-zero net volume charge density and non-zero orientational ordering of water dipoles near the axis.

20.
Soft Matter ; 15(26): 5319-5330, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31237259

RESUMO

Eukaryote cells have a flexible shape, which dynamically changes according to the function performed by the cell. One mechanism for deforming the cell membrane into the desired shape is through the expression of curved membrane proteins. Furthermore, these curved membrane proteins are often associated with the recruitment of the cytoskeleton, which then applies active forces that deform the membrane. This coupling between curvature and activity was previously explored theoretically in the linear limit of small deformations, and low dimensionality. Here we explore the unrestricted shapes of vesicles that contain active curved membrane proteins, in three-dimensions, using Monte-Carlo numerical simulations. The activity of the proteins is in the form of protrusive forces that push the membrane outwards, as may arise from the cytoskeleton of the cell due to actin or microtubule polymerization occurring near the membrane. For proteins that have an isotropic convex shape, the additional protrusive force enhances their tendency to aggregate and form membrane protrusions (buds). In addition, we find another transition from deformed spheres with necklace type aggregates, to flat pancake-shaped vesicles, where the curved proteins line the outer rim. This second transition is driven by the active forces, coupled to the spontaneous curvature, and the resulting configurations may shed light on the formation of sheet-like protrusions and lamellipodia of adhered and motile cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA