Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 17(6): 1540-1560, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33350145

RESUMO

Tomato (Solanum lycopersicon L.) fruit is rich in various nutrients, vitamins and health-promoting molecules. Fresh tomatoes are an important part of the Mediterranean gastronomy, and their consumption is thought to contribute substantially to the reduced incidence of some chronic diseases in the Mediterranean populations in comparison with those of other world areas. Unfortunately, tomato fruit is highly perishable, resulting in important economic losses and posing a challenge to storage, logistic and supply management. This review summarizes the current knowledge on some important health-promoting and eating quality traits of tomato fruits after harvest and highlights the existence of substantial cultivar-to-cultivar variation in the postharvest evolution of the considered traits according to maturity stage at harvest and in response to postharvest manipulations. It also suggests the need for adapting postharvest procedures to the characteristics of each particular genotype to preserve the optimal quality of the fresh product.

2.
Plants (Basel) ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475592

RESUMO

The tomato as a raw material for processing is globally important and is pivotal in dietary and agronomic research due to its nutritional, economic, and health significance. This study explored the potential of machine learning (ML) for predicting tomato quality, utilizing data from 48 cultivars and 28 locations in Hungary over 5 seasons. It focused on °Brix, lycopene content, and colour (a/b ratio) using extreme gradient boosting (XGBoost) and artificial neural network (ANN) models. The results revealed that XGBoost consistently outperformed ANN, achieving high accuracy in predicting °Brix (R² = 0.98, RMSE = 0.07) and lycopene content (R² = 0.87, RMSE = 0.61), and excelling in colour prediction (a/b ratio) with a R² of 0.93 and RMSE of 0.03. ANN lagged behind particularly in colour prediction, showing a negative R² value of -0.35. Shapley additive explanation's (SHAP) summary plot analysis indicated that both models are effective in predicting °Brix and lycopene content in tomatoes, highlighting different aspects of the data. SHAP analysis highlighted the models' efficiency (especially in °Brix and lycopene predictions) and underscored the significant influence of cultivar choice and environmental factors like climate and soil. These findings emphasize the importance of selecting and fine-tuning the appropriate ML model for enhancing precision agriculture, underlining XGBoost's superiority in handling complex agronomic data for quality assessment.

3.
Plants (Basel) ; 12(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37895982

RESUMO

Managing crop yields and optimizing water use is a global challenge, as fresh water supply decreases rapidly and demand remains high. Therefore, understanding how plants react to varying water levels is crucial for efficient water usage. This study evaluates how tomato plants adapt to varying water levels (100%, 50% of crop evapotranspiration, and non-irrigated control) over two growing seasons in 2020 and 2021. Root images were captured weekly during an 8-week monitoring period in 2020 and 6 weeks in 2021 using a non-destructive CI-600 in-situ root imager at depths between 10 and 70 cm. Under water stress, plants developed deeper, more extensive root systems to maximize water uptake, consistent with prior research. Root depth and architecture varied with soil depth and the severity of water stress. Year-to-year variations were also found, likely due to changes in irrigation levels and environmental conditions such as temperature. SPAD values were higher under control conditions, especially in the 2021 growing season, suggesting reduced chlorophyll degradation, while no significant differences were observed in chlorophyll fluorescence (Fv/Fm) between treatments, suggesting stable photosynthetic efficiency under varied water stress conditions. These findings contribute to our understanding of root zone optimization and drought-resilient cultivar breeding, contributing to more sustainable agricultural practices.

4.
Foods ; 12(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37509835

RESUMO

Papaya fruit has a limited shelf life due to its sensitivity to decay and chilling damage during cold storage. The application of methyl jasmonate (MeJA) is known to reduce the incidence of disease and chilling injury, and to maintain the overall quality of the papaya fruit when stored at low temperature. Consequently, the effects of postharvest MeJA (1 mM) immersion on papaya fruits during low-temperature storage (10 °C ± 2 °C) for 28 days were studied. The experiment revealed that MeJA treatment significantly decreased the papaya fruit's weight loss, disease incidence, and chilling injury index. Furthermore, the accumulation of malondialdehyde and hydrogen peroxide was markedly lower after the application of MeJA. In addition, MeJA treatment exhibited significantly higher total phenols, ascorbic acid, antioxidant activity, and titratable acidity in contrast to the control. Similarly, MeJA-treated papaya fruits showed higher antioxidant enzymatic activity (superoxide dismutase, catalase, and peroxidase enzymes) with respect to the control fruits. In addition, MeJA reduced the soluble solids content, ripening index, pH, and sugar contents compared to the control fruits. Furthermore, MeJA-treated papaya fruit exhibited higher sensory and organoleptic quality attributes with respect to untreated papaya fruits. These findings suggested that postharvest MeJA application might be a useful approach for attenuating disease incidence and preventing chilling injury by enhancing antioxidant activities along with enhanced overall quality of papaya fruits during low-temperature storage.

5.
Plants (Basel) ; 12(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37176862

RESUMO

Growing conditions and seasonal fluctuations are critical factors affecting fruit and vegetable nutritional quality. The effects of two partially overlapping cropping seasons, early (ECS; January-May) and full (FCS; March-July), on the main carpometric traits and bioactive components of different watermelon fruits were investigated in the open field. Four watermelon genotypes, comprising of three commercial cultivars 'Crimson Sweet', 'Dumara', 'Giza', and the novel hybrid 'P503 F1', were compared. The carpometric traits varied significantly between genotypes. Soluble solids and yield were higher under FCS than ECS. The variation affecting colour indexes between the two growing seasons exhibited a genotype-dependent trend. The antioxidant components and radical scavenging activity of watermelon fruits were also significantly affected by differences in received solar energy and temperature fluctuations during the trial period. The average citrulline, total phenolics and flavonoid contents were 93%, 71% and 40% higher in FCS than in ECS. A genotype-dependent variation trend was also observed for lycopene and total vitamin C between cropping seasons. The hydrophilic and lipophilic radical scavenging activities of the pulp of ripe watermelon fruits of the different genotypes investigated varied between 243.16 and 425.31 µmol Trolox Equivalent (TE) of 100 g-1 of fresh weight (fw) and from 232.71 to 341.67 µmol TE of 100 g-1 fw in FCS and ECS, respectively. Our results, although preliminary, show that the functional quality of watermelon fruits is drastically altered depending on the environmental conditions that characterize the ECS and LCS.

6.
Front Nutr ; 9: 844162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571925

RESUMO

The results showed that soil electrical conductivity, (EC2: 7 dS/m) increased soluble solids, lycopene content, total phenolic content, hydrophilic and lipophilic radical scavenging activities (HRSA and LRSA) by 14.2, 149, 20, 46.4, and 19.0%, respectively, compared with control. Under 0.5% spent engine oil (SEO), flavonoid content decreased by 21.7% compared with the control. HRSA and LRSA of fruits subjected to EC2/SEO1 treatment were, respectively, 45.9 and 35.5% lower than control. The a*/b* ratio was positively and significantly (P < 0.01) correlated with ß-carotene (R = 0.78), lycopene (R = 0.68), total vitamin C (R = 0.71), α-tocopherol (R = 0.83), γ-tocopherol (R = 0.66), HRSA (R = 0.93), LRSA (R = 0.80), and soluble solids (R = 0.84) suggesting that it may be a promising indicator of fruit quality in areas affected by such constraints. The research revealed that combined stresses induce responses markedly different from those of individual treatments, which strain the need to focus on how the interaction between stresses may affect the functional quality of tomato fruits.

7.
Front Plant Sci ; 13: 1039373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561448

RESUMO

Introduction: Exogenous melatonin (EMT) application has been used to reduce postharvest senescence and improve the quality and antioxidant enzyme activities of papaya fruits during cold storage. Methods: The effects of exogenous melatonin application (1. 5 mM) were investigated on papaya fruits during cold storage (10°C ± 2°C) for 28 days in the present study. Results and discussion: The EMT treatment delayed postharvest senescence significantly with lower maturing status compared with untreated papaya fruits (control). In addition, EMT treatment maintained substantially higher titratable acidity values and ascorbic acid content but significantly lower soluble solids content and lower weight loss compared with the untreated fruits. Concerning the antioxidant capacity, the EMT-treated papaya fruit exhibited markedly higher total phenolic content and, consequently, higher DPPH-radical scavenging activity than the control group. The EMT treatment not only kept a higher enzyme activity of superoxide dismutase, peroxidase, and catalase but also significantly inhibited the accumulation of hydrogen peroxide and malondialdehyde, along with satisfying sensory attributes. Conclusion: The findings of this study indicated that EMT application could be commercially used as an eco-friendly strategy to reduce postharvest senescence and maintain the fresh-like quality traits of papaya fruit during cold storage.

8.
Plants (Basel) ; 10(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34834884

RESUMO

The increasing popularity of pomegranate (Punica granatum L.), driven by the awareness of its nutraceutical properties and excellent environmental adaptability, is promoting a global expansion of its production area. This investigation reports the variability in the weight, moisture, pH, total soluble solids, carbohydrates, organic acids, phenolic compounds, fatty acids, antioxidant activities, and element composition of different fruit parts (juices, peels, and kernels) from four (Ako, Emek, Kamel, and Wonderful One) of the most widely cultivated Israeli pomegranate varieties in Salento (South Italy). To the best of our knowledge, this is the first systematic characterization of different fruit parts from pomegranate cultivars grown simultaneously in the same orchard and subjected to identical agronomic and environmental conditions. Significant genotype-dependent variability was observed for many of the investigated parameters, though without any correlation among fruit parts. The levels of phenols, flavonoids, anthocyanins, and ascorbic and dehydroascorbic acids of all samples were higher than the literature-reported data, as was the antioxidant activity. This is likely due to positive interactions among genotypes, the environment, and good agricultural practices. This study also confirms that pomegranate kernels and peels are, respectively, rich sources of punicic acid and phenols together, with several other bioactive molecules. However, the variability in their levels emphasizes the need for further research to better exploit their agro-industrial potential and thereby increase juice-production chain sustainability. This study will help to assist breeders and growers to respond to consumer and industrial preferences and encourage the development of biorefinery strategies for the utilization of pomegranate by-products as nutraceuticals or value-added ingredients for custom-tailored supplemented foods.

9.
Front Nutr ; 7: 147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015121

RESUMO

Owing to several presumed health-promoting biological activities, increased attention is being given to natural plant chemicals, especially those frequently entering the human diet. Glucosinolates (GLs) are the main bioactive compounds found in broccoli (Brassica oleracea L. var. italica Plenck). Their regular dietary assumption has been correlated with reduced risk of various types of neoplasms (lung, colon, pancreatic, breast, bladder, and prostate cancers), some degenerative diseases, such as Alzheimer's, and decreased incidence of cardiovascular pathologies. GL's synthesis pathway and regulation mechanism have been elucidated mainly in Arabidopsis. However, nearly 56 putative genes have been identified as involved in the B. oleracea GL pathway. It is widely recognized that there are several pre-harvest (genotype, growing environment, cultural practices, ripening stage, etc.) and post-harvest (harvesting, post-harvest treatments, packaging, storage, etc.) factors that affect GL synthesis, profiles, and levels in broccoli. Understanding how these factors act and interact in driving GL accumulation in the edible parts is essential for developing new broccoli cultivars with improved health-promoting bioactivity. In this regard, any systematic and comprehensive review outlining the effects of pre- and post-harvest factors on the accumulation of GLs in broccoli is not yet available. Thus, the goal of this paper is to fill this gap by giving a synoptic overview of the most relevant and recent literature. The existence of substantial cultivar-to-cultivar variation in GL content in response to pre-harvest factors and post-harvest manipulations has been highlighted and discussed. The paper also stresses the need for adapting particular pre- and post-harvest procedures for each particular genotype in order to maintain nutritious, fresh-like quality throughout the broccoli value chain.

10.
Front Plant Sci ; 10: 769, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263475

RESUMO

The quali-quantitative evaluation and the improvement of the levels of plant bioactive secondary metabolites are increasingly gaining consideration by growers, breeders and processors, particularly in those fruits and vegetables that, due to their supposed health promoting properties, are considered "functional." Worldwide, tomato and watermelon are among the main grown and consumed crops and represent important sources not only of dietary lycopene but also of other health beneficial bioactives. Tomato and watermelon synthesize and store lycopene as their major ripe fruit carotenoid responsible of their typical red color at full maturity. It is also the precursor of some characteristic aroma volatiles in both fruits playing, thus, an important visual and olfactory impact in consumer choice. While sharing the same main pigment, tomato and watermelon fruits show substantial biochemical and physiological differences during ripening. Tomato is climacteric while watermelon is non-climacteric; unripe tomato fruit is green, mainly contributed by chlorophylls and xanthophylls, while young watermelon fruit mesocarp is white and contains only traces of carotenoids. Various studies comparatively evaluated in vivo pigment development in ripening tomato and watermelon fruits. However, in most cases, other classes of compounds have not been considered. We believe this knowledge is fundamental for targeted breeding aimed at improving the functional quality of elite cultivars. Hence, in this paper, we critically review the recent understanding underlying the biosynthesis, accumulation and regulation of different bioactive compounds (carotenoids, phenolics, aroma volatiles, and vitamin C) during tomato and watermelon fruit ripening. We also highlight some concerns about possible harmful effects of excessive uptake of bioactive compound on human health. We found that a complex interweaving of anabolic, catabolic and recycling reactions, finely regulated at multiple levels and with temporal and spatial precision, ensures a certain homeostasis in the concentrations of carotenoids, phenolics, aroma volatiles and Vitamin C within the fruit tissues. Nevertheless, several exogenous factors including light and temperature conditions, pathogen attack, as well as pre- and post-harvest manipulations can drive their amounts far away from homeostasis. These adaptive responses allow crops to better cope with abiotic and biotic stresses but may severely affect the supposed functional quality of fruits.

11.
Food Funct ; 7(1): 574-83, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26462607

RESUMO

This study investigates the antioxidant components [lycopene, total phenolics, total flavonoids, ascorbic acid (AsA) and dehydroascorbic acid (DHA)] as well as antioxidant activities of the hydrophilic and lipophilic fractions (AAHF and AALF) of peel, pulp and seed fractions isolated from red-ripe berries of the ordinary tomato cultivar Rio Grande and the two high-lycopene tomato breeding lines HLT-F61 and HLT-F62 simultaneously grown in an open-field of Northern Tunisia. Significant differences (p < 0.05) were found among cultivars for each trait studied. All fractions isolated from the red-ripe berries of HLT lines showed higher lycopene, total phenolics and total flavonoid contents, as well as higher AAHF and AALF, than those isolated from Rio Grande. Regardless of the fraction, HLT-F61 had the highest lycopene content (893.0 mg per kg fw, 280.0 mg per kg fw, and 47.5 mg per kg fw in peel, pulp and seed fractions, respectively) and total phenolics at least 2-fold and 3-fold higher than HLT-F62 and Rio Grande, respectively. Peel and seed fractions from HLT-F61 red-ripe tomato berries had the highest AsA content (345 mg per kg fw and 115 mg per kg fw, respectively), while no significant difference was found in the seed fraction between HLT-F62 and Rio Grande. The HLT-F62 pulp fraction showed the highest content of AsA (186 mg per kg fw) and DHA (151 mg per kg fw) among all the assayed cultivars. Except for the peel fraction, where HLT-F61 had similar AAHF values to HLT-F62, the high-lycopene line HLT-F61 showed higher AAHF values than HLT-F62 and Rio Grande. Regardless of the fraction, the highest AALF values were recorded in HLT-F61 berries. Thus, both HLT tomato lines are promising for the introduction, as advanced hybrids, in either fresh market or processing industry.


Assuntos
Antioxidantes/metabolismo , Carotenoides/química , Fracionamento Químico , Compostos Fitoquímicos/química , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Cruzamento , Carotenoides/metabolismo , Frutas/química , Licopeno , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA