Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol ; 99(6): 1493-1500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36872097

RESUMO

The highly transmittable nature of SARS-CoV-2 has increased the necessity for novel strategies to safely decontaminate public areas. This study investigates the efficacy of a low irradiance 405-nm light environmental decontamination system for the inactivation of bacteriophage phi6 as a surrogate for SARS-CoV-2. Bacteriophage phi6 was exposed to increasing doses of low irradiance (~0.5 mW cm-2 ) 405-nm light while suspended in SM buffer and artificial human saliva at low (~103-4 PFU mL-1 ) and high (~107-8 PFU mL-1 ) seeding densities, to determine system efficacy for SARS-CoV-2 inactivation and establish the influence of biologically relevant suspension media on viral susceptibility. Complete/near-complete (≥99.4%) inactivation was demonstrated in all cases, with significantly enhanced reductions observed in biologically relevant media (P < 0.05). Doses of 43.2 and 172.8 J cm-2 were required to achieve ~3 log10 reductions at low density, and 97.2 and 259.2 J cm-2 achieved ~6 log10 reductions at high density, in saliva and SM buffer, respectively: 2.6-4 times less dose was required when suspended in saliva compared to SM buffer. Comparative exposure to higher irradiance (~50 mW cm-2 ) 405-nm light indicated that, on a per unit dose basis, 0.5 mW cm-2 treatments were capable of achieving up to 5.8 greater log10 reductions with up to 28-fold greater germicidal efficiency than that of 50 mW cm-2 treatments. These findings establish the efficacy of low irradiance 405-nm light systems for inactivation of a SARS-CoV-2 surrogate and demonstrate the significant enhancement in susceptibility when suspended in saliva, which is a major vector in COVID-19 transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Descontaminação
2.
Health Technol (Berl) ; : 1-15, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37363345

RESUMO

Purpose: Lighting systems which use visible light blended with antimicrobial 405-nm violet-blue light have recently been developed for safe continuous decontamination of occupied healthcare environments. This paper characterises the optical output and antibacterial efficacy of a low irradiance 405-nm light system designed for environmental decontamination applications, under controlled laboratory conditions. Methods: In the current study, the irradiance output of a ceiling-mounted 405-nm light source was profiled within a 3×3×2 m (18 m3) test area; with values ranging from 0.001-2.016 mWcm-2. To evaluate antibacterial efficacy of the light source for environmental surface decontamination, irradiance levels within this range (0.021-1 mWcm-2) at various angular (Δ Ï´=0-51.3) and linear (∆s=1.6-2.56 m) displacements from the source were used to generate inactivation kinetics, using the model organism, Staphylococcus aureus. Additionally, twelve bacterial species were surface-seeded and light-exposed at a fixed displacement below the source (1.5 m; 0.5 mWcm-2) to demonstrate broad-spectrum efficacy at heights typical of high touch surfaces within occupied settings. Results: Results demonstrate that significant (P≤0.05) inactivation was successfully achieved at all irradiance values investigated, with spatial positioning from the source affecting inactivation, with greater times required for inactivation as irradiance decreased. Complete/near-complete (≥93.28%) inactivation of all bacteria was achieved following exposure to 0.5 mWcm-2 within exposure times realistic of those utilised practically for whole-room decontamination (2-16 h). Conclusion: This study provides fundamental evidence of the efficacy, and energy efficiency, of low irradiance 405-nm light for bacterial inactivation within a controlled laboratory setting, further justifying its benefits for practical infection control applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA