Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36365800

RESUMO

Feasible local motion planning for autonomous mobile robots in dynamic environments requires predicting how the scene evolves. Conventional navigation stakes rely on a local map to represent how a dynamic scene changes over time. However, these navigation stakes depend highly on the accuracy of the environmental map and the number of obstacles. This study uses semantic segmentation-based drivable area estimation as an alternative representation to assist with local motion planning. Notably, a realistic 3D simulator based on an Unreal Engine was created to generate a synthetic dataset under different weather conditions. A transfer learning technique was used to train the encoder-decoder model to segment free space from the occupied sidewalk environment. The local planner uses a nonlinear model predictive control (NMPC) scheme that inputs the estimated drivable space, the state of the robot, and a global plan to produce safe velocity commands that minimize the tracking cost and actuator effort while avoiding collisions with dynamic and static obstacles. The proposed approach achieves zero-shot transfer from a simulation to real-world environments that have never been experienced during training. Several intensive experiments were conducted and compared with the dynamic window approach (DWA) to demonstrate the effectiveness of our system in dynamic sidewalk environments.


Assuntos
Aprendizado Profundo , Robótica , Dinâmica não Linear , Robótica/métodos , Algoritmos , Movimento (Física)
2.
Sensors (Basel) ; 21(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201390

RESUMO

Three-dimensional object detection utilizing LiDAR point cloud data is an indispensable part of autonomous driving perception systems. Point cloud-based 3D object detection has been a better replacement for higher accuracy than cameras during nighttime. However, most LiDAR-based 3D object methods work in a supervised manner, which means their state-of-the-art performance relies heavily on a large-scale and well-labeled dataset, while these annotated datasets could be expensive to obtain and only accessible in the limited scenario. Transfer learning is a promising approach to reduce the large-scale training datasets requirement, but existing transfer learning object detectors are primarily for 2D object detection rather than 3D. In this work, we utilize the 3D point cloud data more effectively by representing the birds-eye-view (BEV) scene and propose a transfer learning based point cloud semantic segmentation for 3D object detection. The proposed model minimizes the need for large-scale training datasets and consequently reduces the training time. First, a preprocessing stage filters the raw point cloud data to a BEV map within a specific field of view. Second, the transfer learning stage uses knowledge from the previously learned classification task (with more data for training) and generalizes the semantic segmentation-based 2D object detection task. Finally, 2D detection results from the BEV image have been back-projected into 3D in the postprocessing stage. We verify results on two datasets: the KITTI 3D object detection dataset and the Ouster LiDAR-64 dataset, thus demonstrating that the proposed method is highly competitive in terms of mean average precision (mAP up to 70%) while still running at more than 30 frames per second (FPS).


Assuntos
Condução de Veículo , Semântica , Aprendizado de Máquina
3.
Membranes (Basel) ; 13(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37888020

RESUMO

Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic compound in both diluted (ethanol-water-) and concentrated solutions (water-ethanol-). Pervaporation (PV), as a membrane technology, has emerged as a promising solution offering significant reductions in energy and resource consumption during the production of high-purity components. This review aims to provide a panorama of the recent advancements in materials adapted into PV membranes, encompassing polymeric membranes (and possible blending), inorganic membranes, mixed-matrix membranes, and emerging two-dimensional-material membranes. Among these membrane materials, we discuss the ones providing the most relevant performance in separating ethanol from the liquid systems of water-ethanol and ethanol-water, among others. Furthermore, this review identifies the challenges and future opportunities in material design and fabrication techniques, and the establishment of structure-performance relationships. These endeavors aim to propel the development of next-generation pervaporation membranes with an enhanced separation efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA