Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Genes Dev ; 35(21-22): 1431-1444, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34675062

RESUMO

During neocortical development, tight regulation of neurogenesis-to-astrogenesis switching of neural precursor cells (NPCs) is critical to generate a balanced number of each neural cell type for proper brain functions. Accumulating evidence indicates that a complex array of epigenetic modifications and the availability of extracellular factors control the timing of neuronal and astrocytic differentiation. However, our understanding of NPC fate regulation is still far from complete. Bone morphogenetic proteins (BMPs) are renowned as cytokines that induce astrogenesis of gliogenic late-gestational NPCs. They also promote neurogenesis of mid-gestational NPCs, although the underlying mechanisms remain elusive. By performing multiple genome-wide analyses, we demonstrate that Smads, transcription factors that act downstream from BMP signaling, target dramatically different genomic regions in neurogenic and gliogenic NPCs. We found that histone H3K27 trimethylation and DNA methylation around Smad-binding sites change rapidly as gestation proceeds, strongly associated with the alteration of accessibility of Smads to their target binding sites. Furthermore, we identified two lineage-specific Smad-interacting partners-Sox11 for neurogenic and Sox8 for astrocytic differentiation-that further ensure Smad-regulated fate-specific gene induction. Our findings illuminate an exquisite regulation of NPC property change mediated by the interplay between cell-extrinsic cues and -intrinsic epigenetic programs during cortical development.


Assuntos
Células-Tronco Neurais , Encéfalo , Diferenciação Celular/genética , Epigênese Genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Neurogênese/genética , Gravidez , Fatores de Transcrição SOXE/genética
2.
Endocr J ; 71(2): 181-191, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38220202

RESUMO

Vertebrate animals often exhibit sexual dimorphism in body shape. In mammals, decreases in sex hormones caused by testicular castration can affect body shape and occasionally lead to pathologies such as obesity. Post-castration obesity can also be problematic for the health of companion animals, including non-mammals. In order to understand the mechanism of post-castration obesity in vertebrates other than mammals, experimental models are required. We examined whether the Iberian ribbed newt, which has recently become a popular experimental model for amphibian research, could serve as a model for analyzing changes in body shape after castration. In newts, new testes can be regenerated after removal of differentiated testes. We analyzed changes in body shape by removing the testes under conditions in which they could regenerate or conditions in which they could not regenerate. Removal of the testes reduced blood testosterone levels. The body weight and abdominal girth of the newts were increased compared with normal male newts. Transcriptome analysis of the liver showed that a set of genes related to lipid metabolism was continuously up-regulated in castrated newts. Our study suggests that changes in body shape after castration are common in vertebrates. Iberian ribbed newts are thus a suitable model for comparative studies of the long-term physiologic- and endocrine-level effects of castration.


Assuntos
Obesidade , Salamandridae , Animais , Masculino , Salamandridae/genética , Castração , Aumento de Peso , Mamíferos , Testosterona
3.
J Reprod Dev ; 70(2): 55-64, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38246612

RESUMO

The mammalian X chromosome exhibits enrichment in genes associated with germ cell development. Previously, we generated a rat model of Becker muscular dystrophy (BMD) characterized by an in-frame mutation in the dystrophin gene, situated on the X chromosome and responsible for encoding a protein crucial for muscle integrity. Male BMD rats are infertile owing to the absence of normal spermatids in the epididymis. Within the seminiferous tubules of BMD rats, elongated spermatids displayed abnormal morphology. To elucidate the cause of infertility, we identified a putative gene containing an open reading frame situated in the intronic region between exons 6 and 7 of the dystrophin gene, specifically deleted in male BMD rats. This identified gene, along with its encoded protein, exhibited specific detection within the testes, exclusively localized in round to elongated spermatids during spermiogenesis. Consequently, we designated the encoded protein as dystrophin-locus-derived testis-specific protein (DTSP). Given the absence of DTSP in the testes of BMD rats, we hypothesized that the loss of DTSP contributes to the infertility observed in male BMD rats.


Assuntos
Infertilidade , Succinimidas , Testículo , Masculino , Ratos , Animais , Testículo/metabolismo , Distrofina/genética , Distrofina/metabolismo , Espermatogênese/genética , Proteínas/metabolismo , Infertilidade/metabolismo , Mamíferos
4.
Nature ; 539(7628): 299-303, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27750280

RESUMO

The female germ line undergoes a unique sequence of differentiation processes that confers totipotency to the egg. The reconstitution of these events in vitro using pluripotent stem cells is a key achievement in reproductive biology and regenerative medicine. Here we report successful reconstitution in vitro of the entire process of oogenesis from mouse pluripotent stem cells. Fully potent mature oocytes were generated in culture from embryonic stem cells and from induced pluripotent stem cells derived from both embryonic fibroblasts and adult tail tip fibroblasts. Moreover, pluripotent stem cell lines were re-derived from the eggs that were generated in vitro, thereby reconstituting the full female germline cycle in a dish. This culture system will provide a platform for elucidating the molecular mechanisms underlying totipotency and the production of oocytes of other mammalian species in culture.


Assuntos
Oócitos/citologia , Oogênese/fisiologia , Células-Tronco Pluripotentes/citologia , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Feminino , Fertilização , Técnicas In Vitro , Masculino , Meiose , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Oócitos/metabolismo , Oogênese/genética , Transcriptoma/genética
5.
J Reprod Dev ; 67(6): 369-379, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34615840

RESUMO

Post-mitotic neurons do exhibit DNA methylation changes, contrary to the longstanding belief that the epigenetic pattern in terminally differentiated cells is essentially unchanged. While the mechanism and physiological significance of DNA demethylation in neurons have been extensively elucidated, the occurrence of de novo DNA methylation and its impacts have been much less investigated. In the present study, we showed that neuronal activation induces de novo DNA methylation at enhancer regions, which can repress target genes in primary cultured hippocampal neurons. The functional significance of this de novo DNA methylation was underpinned by the demonstration that inhibition of DNA methyltransferase (DNMT) activity decreased neuronal activity-induced excitatory synaptogenesis. Overexpression of WW and C2 domain-containing 1 (Wwc1), a representative target gene of de novo DNA methylation, could phenocopy this DNMT inhibition-induced decrease in synaptogenesis. We found that both DNMT1 and DNMT3a were required for neuronal activity-induced de novo DNA methylation of the Wwc1 enhancer. Taken together, we concluded that neuronal activity-induced de novo DNA methylation that affects gene expression has an impact on neuronal physiology that is comparable to that of DNA demethylation. Since the different requirements of DNMTs for germ cell and embryonic development are known, our findings also have considerable implications for future studies on epigenomics in the field of reproductive biology.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Neurônios/metabolismo , Sequências Reguladoras de Ácido Nucleico
6.
J Reprod Dev ; 66(4): 369-375, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32336702

RESUMO

Accumulating evidence suggests that kisspeptin-GPR54 signaling is indispensable for gonadotropin-releasing hormone (GnRH)/gonadotropin secretion and consequent reproductive functions in mammals. Conventional Kiss1 knockout (KO) mice and rats are reported to be infertile. To date, however, no study has investigated the effect of inducible central Kiss1 KO/knockdown on pulsatile gonadotropin release in male mammals. Here we report an in vivo analysis of inducible conditional Kiss1 knockdown male mice. The mice were generated by a bilateral injections of either adeno-associated virus (AAV) vectors driving Cre recombinase (AAV-Cre) or AAV vectors driving GFP (AAV-GFP, control) into the hypothalamic arcuate nucleus (ARC) of Kiss1-floxed male mice, in which exon 3 of the Kiss1 gene were floxed with loxP sites. Four weeks after the AAV-Cre injection, the mice showed a profound decrease in the both number of ARC Kiss1-expressing cells and the luteinizing hormone (LH) pulse frequency. Interestingly, pulsatile LH secretion was apparent 8 weeks after the AAV-Cre injection despite the suppression of ARC Kiss1 expression. The control Kiss1-floxed mice infected with AAV-GFP showed apparent LH pulses and Kiss1 expression in the ARC at both 4 and 8 weeks after the AAV-GFP injection. These results with an inducible conditional Kiss1 knockdown in the ARC of male mice suggest that ARC kisspeptin neurons are responsible for pulsatile LH secretion in male mice, and indicate the possibility of a compensatory mechanism that restores GnRH/LH pulse generation.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/genética , Hormônio Luteinizante/sangue , Neurônios/metabolismo , Animais , Técnicas de Silenciamento de Genes , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Masculino , Camundongos
7.
J Reprod Dev ; 66(4): 359-367, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32307336

RESUMO

The present study aimed to evaluate whether novel conditional kisspeptin neuron-specific Kiss1 knockout (KO) mice utilizing the Cre-loxP system could recapitulate the infertility of global Kiss1 KO models, thereby providing further evidence for the fundamental role of hypothalamic kisspeptin neurons in regulating mammalian reproduction. We generated Kiss1-floxed mice and hypothalamic kisspeptin neuron-specific Cre-expressing transgenic mice and then crossed these two lines. The conditional Kiss1 KO mice showed pubertal failure along with a suppression of gonadotropin secretion and ovarian atrophy. These results indicate that newly-created hypothalamic Kiss1 KO mice obtained by the Cre-loxP system recapitulated the infertility of global Kiss1 KO models, suggesting that hypothalamic kisspeptin, but not peripheral kisspeptin, is critical for reproduction. Importantly, these Kiss1-floxed mice are now available and will be a valuable tool for detailed analyses of roles of each population of kisspeptin neurons in the brain and peripheral kisspeptin-producing cells by the spatiotemporal-specific manipulation of Cre expression.


Assuntos
Hipogonadismo/genética , Hipotálamo/metabolismo , Kisspeptinas/genética , Neurônios/metabolismo , Animais , Hipogonadismo/metabolismo , Kisspeptinas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo
8.
Development ; 142(5): 910-20, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25633350

RESUMO

In mice, zygotic activation occurs for a wide variety of genes, mainly at the 2-cell stage. Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators of gene expression. In this study, directional RNA-seq of MII oocytes and 2-cell embryos identified more than 1000 divergently transcribed lncRNA/mRNA gene pairs. Expression of these bidirectional promoter-associated noncoding RNAs (pancRNAs) was strongly associated with the upregulation of their cognate genes. Conversely, knockdown of three abundant pancRNAs led to reduced mRNA expression, accompanied by sustained DNA methylation even in the presence of enzymes responsible for DNA demethylation. In particular, microinjection of siRNA against the abundant pancRNA partner of interleukin 17d (Il17d) mRNA at the 1-cell stage caused embryonic lethality, which was rescued by supplying IL17D protein in vitro at the 4-cell stage. Thus, this novel class of lncRNAs can modulate the transcription machinery in cis to activate zygotic genes and is important for preimplantation development.


Assuntos
RNA Longo não Codificante/genética , Animais , Blastocisto/metabolismo , Blastocisto/fisiologia , Metilação de DNA/genética , Mineração de Dados , Epigênese Genética/genética , Feminino , Masculino , Camundongos , Oócitos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase , Gravidez , Espermatozoides/citologia
9.
Cell Tissue Res ; 371(1): 189-199, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28695279

RESUMO

Severe spinal cord injury (SCI) leads to almost complete neural cell loss at the injured site, causing the irreversible disruption of neuronal circuits. The transplantation of neural stem or precursor cells (NS/PCs) has been regarded as potentially effective for SCI treatment because NS/PCs can compensate for the injured sites by differentiating into neurons and glial cells (astrocytes and oligodendrocytes). An understanding of the molecular mechanisms that regulate the proliferation, fate specification and maturation of NS/PCs and their progeny would facilitate the establishment of better therapeutic strategies for regeneration after SCI. In recent years, several studies of SCI animal models have demonstrated that the modulation of specific epigenetic marks by histone modifiers and non-coding RNAs directs the setting of favorable cellular environments that promote the neuronal differentiation of NS/PCs and/or the elongation of the axons of the surviving neurons at the injured sites. In this review, we provide an overview of recent progress in the epigenetic regulation/manipulation of neural cells for the treatment of SCI.


Assuntos
Epigênese Genética , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Neurogênese/genética , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal , Transplante de Células-Tronco , Animais , Astrócitos/citologia , Modelos Animais de Doenças , Humanos , Camundongos , Células-Tronco Neurais/citologia , Neurônios/citologia , Oligodendroglia/citologia , Ratos
10.
Nucleic Acids Res ; 44(11): 5105-22, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-26945044

RESUMO

Bidirectional promoters are the major source of gene activation-associated noncoding RNA (ncRNA). PC12 cells offer an interesting model for understanding the mechanism underlying bidirectional promoter-mediated cell cycle control. Nerve growth factor (NGF)-stimulated PC12 cells elongate neurites, and are in a reversible cell-cycle-arrested state. In contrast, these cells irreversibly differentiate and cannot re-enter the normal cell cycle after NGF plus cAMP treatment. In this study, using directional RNA-seq, we found that bidirectional promoters for protein-coding genes with promoter-associated ncRNA (pancRNA) were enriched for cAMP response element consensus sequences, and were preferred targets for transcriptional regulation by the transcription factors in the cAMP-dependent pathway. A spindle-formation-associated gene, Nusap1 and pancNusap1 were among the most strictly co-transcribed pancRNA-mRNA pairs. This pancRNA-mRNA pair was specifically repressed in irreversibly differentiated PC12 cells. Knockdown (KD) and overexpression experiments showed that pancNusap1 positively regulated the Nusap1 expression in a sequence-specific manner, which was accompanied by histone acetylation at the Nusap1 promoter. Furthermore, pancNusap1 KD recapitulated the effects of cAMP on cell cycle arrest. Thus, we conclude that pancRNA-mediated histone acetylation contributes to the establishment of the cAMP-induced transcription state of the Nusap1 locus and contributes to the irreversible cell cycle exit for terminal differentiation of PC12 cells.


Assuntos
Diferenciação Celular , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , RNA não Traduzido , Transdução de Sinais , Acetilação , Animais , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Fator de Crescimento Neural/metabolismo , Células PC12 , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Elementos de Resposta , Fatores de Transcrição/metabolismo
11.
BMC Genomics ; 18(1): 285, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388877

RESUMO

BACKGROUND: Recent transcriptome analyses have shown that long non-coding RNAs (ncRNAs) play extensive roles in transcriptional regulation. In particular, we have reported that promoter-associated ncRNAs (pancRNAs) activate the partner gene expression via local epigenetic changes. RESULTS: Here, we identify thousands of genes under pancRNA-mediated transcriptional activation in five mammalian species in common. In the mouse, 1) pancRNA-partnered genes confined their expression pattern to certain tissues compared to pancRNA-lacking genes, 2) expression of pancRNAs was significantly correlated with the enrichment of active chromatin marks, H3K4 trimethylation and H3K27 acetylation, at the promoter regions of the partner genes, 3) H3K4me1 marked the pancRNA-partnered genes regardless of their expression level, and 4) C- or G-skewed motifs were exclusively overrepresented between-200 and-1 bp relative to the transcription start sites of the pancRNA-partnered genes. More importantly, the comparative transcriptome analysis among five different mammalian species using a total of 25 counterpart tissues showed that the overall pancRNA expression profile exhibited extremely high species-specificity compared to that of total mRNA, suggesting that interspecies difference in pancRNA repertoires might lead to the diversification of mRNA expression profiles. CONCLUSIONS: The present study raises the interesting possibility that the gain and/or loss of gene-activation-associated pancRNA repertoires, caused by formation or disruption of the genomic GC-skewed structure in the course of evolution, finely shape the tissue-specific pattern of gene expression according to a given species.


Assuntos
Evolução Molecular , Mamíferos/genética , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Ativação Transcricional , Transcriptoma , Animais , Sequência de Bases , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Camundongos , Motivos de Nucleotídeos , Especificidade de Órgãos/genética , RNA Mensageiro/genética
12.
Proc Natl Acad Sci U S A ; 109(20): E1294-301, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22505735

RESUMO

This study aims to determine the epigenetic mechanism regulating Kiss1 gene expression in the anteroventral periventricular nucleus (AVPV) to understand the mechanism underlying estrogen-positive feedback action on gonadotropin-releasing hormone/gonadotropin surge. We investigated estrogen regulation of the epigenetic status of the mouse AVPV Kiss1 gene locus in comparison with the arcuate nucleus (ARC), in which Kiss1 expression is down-regulated by estrogen. Histone of AVPV Kiss1 promoter region was highly acetylated, and estrogen receptor α was highly recruited at the region by estrogen. In contrast, the histone of ARC Kiss1 promoter region was deacetylated by estrogen. Inhibition of histone deacetylation up-regulated in vitro Kiss1 expression in a hypothalamic non-Kiss1-expressing cell line. Gene conformation analysis indicated that estrogen induced formation of a chromatin loop between Kiss1 promoter and the 3' intergenic region, suggesting that the intergenic region serves to enhance estrogen-dependent Kiss1 expression in the AVPV. This notion was proved, because transgenic reporter mice with a complete Kiss1 locus sequence showed kisspeptin neuron-specific GFP expression in both the AVPV and ARC, but the deletion of the 3' region resulted in greatly reduced GFP expression only in the AVPV. Taken together, these results demonstrate that estrogen induces recruitment of estrogen receptor α and histone acetylation in the Kiss1 promoter region of the AVPV and consequently enhances chromatin loop formation of Kiss1 promoter and Kiss1 gene enhancer, resulting in an increase in AVPV-specific Kiss1 gene expression. These results indicate that epigenetic regulation of the Kiss1 gene is involved in estrogen-positive feedback to generate the gonadotropin-releasing hormone/gonadotropin surge.


Assuntos
Núcleos Anteriores do Tálamo/metabolismo , Epigênese Genética/fisiologia , Estrogênios/metabolismo , Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica/fisiologia , Kisspeptinas/metabolismo , Acetilação , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Sequência de Bases , DNA Intergênico/metabolismo , Epigênese Genética/genética , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Fluorescência Verde/genética , Histonas/metabolismo , Kisspeptinas/genética , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Análise de Sequência de DNA
13.
BMC Genomics ; 15: 35, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24438357

RESUMO

BACKGROUND: The majority of non-coding RNAs (ncRNAs) involved in mRNA metabolism in mammals have been believed to downregulate the corresponding mRNA expression level in a pre- or post-transcriptional manner by forming short or long ncRNA-mRNA duplex structures. Information on non-duplex-forming long ncRNAs is now also rapidly accumulating. To examine the directional properties of transcription at the whole-genome level, we performed directional RNA-seq analysis of mouse and chimpanzee tissue samples. RESULTS: We found that there is only about 1% of the genome where both the top and bottom strands are utilized for transcription, suggesting that RNA-RNA duplexes are not abundantly formed. Focusing on transcription start sites (TSSs) of protein-coding genes revealed that a significant fraction of them contain switching-points that separate antisense- and sense-biased transcription, suggesting that head-to-head transcription is more prevalent than previously thought. More than 90% of head-to-head type promoters contain CpG islands. Moreover, CCG and CGG repeats are significantly enriched in the upstream regions and downstream regions, respectively, of TSSs located in head-to-head type promoters. Genes with tissue-specific promoter-associated ncRNAs (pancRNAs) show a positive correlation between the expression of their pancRNA and mRNA, which is in accord with the proposed role of pancRNA in facultative gene activation, whereas genes with constitutive expression generally lack pancRNAs. CONCLUSIONS: We propose that single-stranded ncRNA resulting from head-to-head transcription at GC-rich sequences regulates tissue-specific gene expression.


Assuntos
Regiões Promotoras Genéticas , RNA não Traduzido/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sequência de Bases , Córtex Cerebral/metabolismo , Ilhas de CpG , Genoma , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Ativação Transcricional , Repetições de Trinucleotídeos
14.
Mar Biotechnol (NY) ; 26(2): 338-350, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451444

RESUMO

The sea squirt Ciona robusta (formerly Ciona intestinalis type A) has been the subject of many interdisciplinary studies. Known as a vanadium-rich ascidian, C. robusta is an ideal model for exploring microbes associated with the ascidian and the roles of these microbes in vanadium accumulation and reduction. In this study, we discovered two bacterial strains that accumulate large amounts of vanadium, CD2-88 and CD2-102, which belong to the genera Pseudoalteromonas and Vibrio, respectively. The growth medium composition impacted vanadium uptake. Furthermore, pH was also an important factor in the accumulation and localization of vanadium. Most of the vanadium(V) accumulated by these bacteria was converted to less toxic vanadium(IV). Our results provide insights into vanadium accumulation and reduction by bacteria isolated from the ascidian C. robusta to further study the relations between ascidians and microbes and their possible applications for bioremediation or biomineralization.


Assuntos
Ciona intestinalis , Vanádio , Animais , Vanádio/metabolismo , Ciona intestinalis/metabolismo , Ciona intestinalis/microbiologia , Pseudoalteromonas/metabolismo , Vibrio/metabolismo , Concentração de Íons de Hidrogênio , Intestinos/microbiologia , Meios de Cultura/química , RNA Ribossômico 16S/genética
15.
Front Cell Dev Biol ; 11: 1168072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408531

RESUMO

Microcephaly is characterized as a small head circumference, and is often accompanied by developmental disorders. Several candidate risk genes for this disease have been described, and mutations in non-coding regions are occasionally found in patients with microcephaly. Various non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), SINEUPs, telomerase RNA component (TERC), and promoter-associated lncRNAs (pancRNAs) are now being characterized. These ncRNAs regulate gene expression, enzyme activity, telomere length, and chromatin structure through RNA binding proteins (RBPs)-RNA interaction. Elucidating the potential roles of ncRNA-protein coordination in microcephaly pathogenesis might contribute to its prevention or recovery. Here, we introduce several syndromes whose clinical features include microcephaly. In particular, we focus on syndromes for which ncRNAs or genes that interact with ncRNAs may play roles. We discuss the possibility that the huge ncRNA field will provide possible new therapeutic approaches for microcephaly and also reveal clues about the factors enabling the evolutionary acquisition of the human-specific "large brain."

16.
Front Endocrinol (Lausanne) ; 14: 1129666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967776

RESUMO

Consecutive sexual maturation (CSM), an abnormal reproductive phenomenon of a marine snail, Reishia clavigera, has occurred since 2017 in the vicinity of the Fukushima Daiichi Nuclear Power Plant after the nuclear disaster there. We hypothesized that alterations in animal physiology mediated through genetic/epigenetic changes could sensitively reflect environmental pollution. Understanding the mechanism of this rapid biological response should enable us to quantitatively evaluate long-lasting effects of the nuclear disaster. To determine the molecular basis for CSM, we conducted transcriptome profiling in the ganglia of normal and CSM snails. We assembled the short-read cDNA sequences obtained by Illumina sequencing, and succeeded in characterizing more than 60,000 gene models that include 88 kinds of neuropeptide precursors by BLAST search and experimental curation. GO-enrichment analysis of the differentially expressed genes demonstrated that severe downregulation of neuropeptide-related genes occurred concomitantly with CSM. In particular, significant decreases of the transcripts of 37 genes among 88 neuropeptide precursor genes, including those for myomodulin, PentaFVamide, maturation-associated peptide-5A and conopressin, were commonly observed in female and male CSM snails. By contrast, microseminoprotein precursor was the only exceptional case where the expression was increased in CSM snails. These results indicate that down-regulation of neuropeptide precursors is a remarkable feature of CSM. We also found that factors involved in epigenetic modification rather than transcription factors showed altered patterns of expression upon CSM. Comprehensive expression panels of snail neuropeptide precursors made in this study will be useful tools for environmental assessment as well as for studying marine reproductive biology.


Assuntos
Desastres , Neuropeptídeos , Animais , Maturidade Sexual , Regulação para Baixo , Japão , Neuropeptídeos/metabolismo
17.
FEBS Lett ; 597(21): 2611-2625, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37846797

RESUMO

Cortical expansion has occurred during human brain evolution. By comparing human and mouse RNA-seq datasets, we found that transmembrane protein 25 (TMEM25) was much more highly expressed in human neural progenitors (NPCs). Overexpression of either human TMEM25 or mouse Tmem25 similarly promoted mouse NPC proliferation in vitro. Mimicking human-type expression of TMEM25 in mouse ventricular cortical progenitors accelerated proliferation of basal radial glia (bRG) and increased the number of upper-layer neurons in vivo. By contrast, RNA-seq analysis, and pharmacological assays showed that knockdown of TMEM25 in cultured human NPCs compromised the effects of extracellular signals, leading to cell cycle inhibition via Akt repression. Thus, TMEM25 can receive extracellular signals to expand bRG in human cortical development.


Assuntos
Células-Tronco Neurais , Animais , Humanos , Camundongos , Encéfalo , Proliferação de Células , Neurogênese , Neurônios/metabolismo
18.
J Biol Chem ; 286(40): 34788-99, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21844201

RESUMO

A growing number of noncoding RNAs (ncRNAs) are thought to be involved in sequence-specific alterations of epigenetic processes, mostly causing gene repression. In this study, promoter-associated ncRNAs (pancRNAs >200 nucleotides in size) that were endogenously generated from the sense strand at Map2b, antisense strand at Nefl, and both strands at Vim were investigated regarding their epigenetic potential as positive or negative regulators in rat pheochromocytoma (PC12) and fibroblast (normal rat kidney) cell lines. The respective antisense pancRNAs were associated with several active chromatin marks at the Nefl and Vim promoters. Forced expression of fragments expressing the antisense pancRNAs caused sequence-specific DNA demethylation, whereas a decrease of expression induced methylation of the same sequences. In contrast, perturbing the expression of the two sense pancRNAs did not change the DNA methylation status. These results suggest that a fraction of naturally occurring ncRNAs acts in cis as a single-stranded form and that the transcriptional orientation of pancRNA is important for the establishment of sequence-specific epigenetic modifications consistent with open chromatin structure.


Assuntos
Regiões Promotoras Genéticas , RNA não Traduzido/química , RNA/química , Animais , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Masculino , Células PC12 , RNA Antissenso/metabolismo , Ratos , Ratos Wistar
19.
Horm Behav ; 59(3): 345-52, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20619266

RESUMO

Epigenetic regulation of the nuclear estrogen and androgen receptors, ER and AR, constitutes the molecular basis for the long-lasting effects of sex steroids on gene expression in cells. The effects prevail at hundreds of gene loci in the proximity of estrogen- and androgen-responsive elements and many more such loci through intra- and even inter-chromosomal level regulation. Such a memory system should be active in a flexible manner during the early development of vertebrates, and later replaced to establish more stable marks on genomic DNA. In mammals, DNA methylation is utilized as a very stable mark for silencing of the ERα and AR isoform expression during cancer cell and normal brain development. The factors affecting the DNA methylation of the ERα and AR genes in cells include estrogen and androgen. Since testosterone induces brain masculinization through its aromatization to estradiol in a narrow time window of the perinatal stage in rodents, the autoregulation of estrogen receptors, especially the predominant form of ERα, at the level of DNA methylation to set up the "cell memory" affecting the sexually differentiated status of brain function has been attracting increasing attention. The alternative usage of the androgen-AR system for brain masculinization and estrogenic regulation of AR expression in some species imply that the DNA methylation pattern of the AR gene can be established by closely related but different systems for sex steroid-induced phenomena, including brain masculinization.


Assuntos
Encéfalo/metabolismo , Epigênese Genética/genética , Receptor alfa de Estrogênio/genética , Receptores Androgênicos/genética , Diferenciação Sexual/genética , Animais , Metilação de DNA/genética , Receptor alfa de Estrogênio/metabolismo , Homeostase/genética , Neurônios/metabolismo , Receptores Androgênicos/metabolismo
20.
Essays Biochem ; 65(4): 697-708, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34328174

RESUMO

Increasing evidence has shown that many long non-coding RNAs (lncRNAs) are involved in gene regulation in a variety of ways such as transcriptional, post-transcriptional and epigenetic regulation. Promoter-associated non-coding RNAs (pancRNAs), which are categorized into the most abundant single-copy lncRNA biotype, play vital regulatory roles in finely tuning cellular specification at the epigenomic level. In short, pancRNAs can directly or indirectly regulate downstream genes to participate in the development of organisms in a cell-specific manner. In this review, we will introduce the evolutionarily acquired characteristics of pancRNAs as determined by comparative epigenomics and elaborate on the research progress on pancRNA-involving processes in mammalian embryonic development, including neural differentiation.


Assuntos
Epigênese Genética , RNA Longo não Codificante , Animais , Feminino , Mamíferos/genética , Gravidez , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , RNA não Traduzido/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA