RESUMO
The regenerative potential of neural stem cells (NSCs) declines during aging, leading to cognitive dysfunctions. This decline involves up-regulation of senescence-associated genes, but inactivation of such genes failed to reverse aging of hippocampal NSCs. Because many genes are up-regulated or down-regulated during aging, manipulation of single genes would be insufficient to reverse aging. Here we searched for a gene combination that can rejuvenate NSCs in the aged mouse brain from nuclear factors differentially expressed between embryonic and adult NSCs and their modulators. We found that a combination of inducing the zinc finger transcription factor gene Plagl2 and inhibiting Dyrk1a, a gene associated with Down syndrome (a genetic disorder known to accelerate aging), rejuvenated aged hippocampal NSCs, which already lost proliferative and neurogenic potential. Such rejuvenated NSCs proliferated and produced new neurons continuously at the level observed in juvenile hippocampi, leading to improved cognition. Epigenome, transcriptome, and live-imaging analyses indicated that this gene combination induces up-regulation of embryo-associated genes and down-regulation of age-associated genes by changing their chromatin accessibility, thereby rejuvenating aged dormant NSCs to function like juvenile active NSCs. Thus, aging of NSCs can be reversed to induce functional neurogenesis continuously, offering a way to treat age-related neurological disorders.
Assuntos
Células-Tronco Neurais , Rejuvenescimento , Animais , Hipocampo , Camundongos , Neurogênese/genética , NeurôniosRESUMO
cAMP is a universal second messenger regulated by various upstream pathways including Ca2+ and G-protein-coupled receptors (GPCRs). To decipher in vivo cAMP dynamics, we rationally designed cAMPinG1, a sensitive genetically encoded green cAMP indicator that outperformed its predecessors in both dynamic range and cAMP affinity. Two-photon cAMPinG1 imaging detected cAMP transients in the somata and dendritic spines of neurons in the mouse visual cortex on the order of tens of seconds. In addition, multicolor imaging with a sensitive red Ca2+ indicator RCaMP3 allowed simultaneous measurement of population patterns in Ca2+ and cAMP in hundreds of neurons. We found Ca2+-related cAMP responses that represented specific information, such as direction selectivity in vision and locomotion, as well as GPCR-related cAMP responses. Overall, our multicolor suite will facilitate analysis of the interaction between the Ca2+, GPCR and cAMP signaling at single-cell resolution both in vitro and in vivo.
Assuntos
Cálcio , AMP Cíclico , Neurônios , Córtex Visual , Animais , AMP Cíclico/metabolismo , Cálcio/metabolismo , Camundongos , Córtex Visual/metabolismo , Córtex Visual/fisiologia , Córtex Visual/citologia , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Sinalização do Cálcio , Células HEK293RESUMO
Somatic stem/progenitor cells are active in embryonic tissues but quiescent in many adult tissues. The detailed mechanisms that regulate active versus quiescent stem cell states are largely unknown. In active neural stem cells, Hes1 expression oscillates and drives cyclic expression of the proneural gene Ascl1, which activates cell proliferation. Here, we found that in quiescent neural stem cells in the adult mouse brain, Hes1 levels are oscillatory, although the peaks and troughs are higher than those in active neural stem cells, causing Ascl1 expression to be continuously suppressed. Inactivation of Hes1 and its related genes up-regulates Ascl1 expression and increases neurogenesis. This causes rapid depletion of neural stem cells and premature termination of neurogenesis. Conversely, sustained Hes1 expression represses Ascl1, inhibits neurogenesis, and maintains quiescent neural stem cells. In contrast, induction of Ascl1 oscillations activates neural stem cells and increases neurogenesis in the adult mouse brain. Thus, Ascl1 oscillations, which normally depend on Hes1 oscillations, regulate the active state, while high Hes1 expression and resultant Ascl1 suppression promote quiescence in neural stem cells.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/citologia , Regulação da Expressão Gênica , Células-Tronco Neurais , Neurogênese/genética , Fatores de Transcrição HES-1/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Inativação Gênica , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Optogenética , Regiões Promotoras Genéticas , Fatores de Transcrição HES-1/metabolismoRESUMO
The Gal4/UAS system is a versatile tool to manipulate exogenous gene expression of cells spatially and temporally in many model organisms. Many variations of light-controllable Gal4/UAS system are now available, following the development of photo-activatable (PA) molecular switches and integration of these tools. However, many PA-Gal4 transcription factors have undesired background transcription activities even in dark conditions, and this severely attenuates reliable light-controlled gene expression. Therefore, it is important to develop reliable PA-Gal4 transcription factors with robust light-induced gene expression and limited background activity. By optimization of synthetic PA-Gal4 transcription factors, we have validated configurations of Gal4 DNA biding domain, transcription activation domain and blue light-dependent dimer formation molecule Vivid (VVD), and applied types of transcription activation domains to develop a new PA-Gal4 transcription factor we have named eGAV (enhanced Gal4-VVD transcription factor). Background activity of eGAV in dark conditions was significantly lower than that of hGAVPO, a commonly used PA-Gal4 transcription factor, and maximum light-induced gene expression levels were also improved. Light-controlled gene expression was verified in cultured HEK293T cells with plasmid-transient transfections, and in mouse EpH4 cells with lentivirus vector-mediated transduction. Furthermore, light-controlled eGAV-mediated transcription was confirmed in transfected neural stem cells and progenitors in developing and adult mouse brain and chick spinal cord, and in adult mouse hepatocytes, demonstrating that eGAV can be applied to a wide range of experimental systems and model organisms.Key words: optogenetics, Gal4/UAS system, transcription, gene expression, Vivid.
Assuntos
Optogenética , Fatores de Transcrição , Animais , Humanos , Camundongos , Regulação da Expressão Gênica , Células HEK293 , Mamíferos/genética , Mamíferos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo , Células CultivadasRESUMO
Nerve/glial antigen 2 (NG2) is a protein marker of NG2 glia and mural cells, and NG2 promoter activity is utilized to target these cells. However, the NG2 promoter cannot target NG2 glia and mural cells separately. This has been an obstacle for NG2 glia-specific manipulation. Here, we developed transgenic mice in which either cell type can be targeted using the NG2 promoter. We selected a tetracycline-controllable gene induction system for cell type-specific transgene expression, and generated NG2-tetracycline transactivator (tTA) transgenic lines. We crossed tTA lines with the tetO-ChR2 (channelrhodopsin-2)-EYFP line to characterize tTA-dependent transgene induction. We isolated two unique NG2-tTA mouse lines: one that induced ChR2-EYFP only in mural cells, likely due to the chromosomal position effect of NG2-tTA insertion, and the other that induced it in both cell types. We then applied a Cre-mediated set-subtraction strategy to the latter case and eliminated ChR2-EYFP from mural cells, resulting in NG2 glia-specific transgene induction. We further demonstrated that tTA-dependent ChR2 expression could manipulate cell function. Optogenetic mural cell activation decreased cerebral blood flow, as previously reported, indicating that tTA-mediated ChR2 expression was sufficient to impact cellular function. ChR2-mediated depolarization was observed in NG2 glia in acute hippocampal slices. In addition, ChR2-mediated depolarization of NG2 glia inhibited their proliferation but promoted their differentiation in juvenile mice. Since the tTA-tetO combination is expandable, the mural cell-specific NG2-tTA line and the NG2 glia-specific NG2-tTA line will permit us to conduct observational and manipulation studies to examine in vivo function of these cells separately.
Assuntos
Neuroglia , Optogenética , Animais , Camundongos , Neuroglia/metabolismo , Camundongos Transgênicos , Antígenos/genética , Antígenos/metabolismo , Tetraciclinas/metabolismoRESUMO
During cochlear development, hair cells (HCs) and supporting cells differentiate in the prosensory domain to form the organ of Corti, but how one row of inner HCs (IHCs) and three rows of outer HCs (OHCs) are organized is not well understood. Here, we investigated the process of HC induction by monitoring Atoh1 expression in cochlear explants of Atoh1-EGFP knock-in mouse embryos and showed that only the cells that express Atoh1 over a certain threshold are selected for HC fate determination. HC induction initially occurs at the medial edge of the prosensory domain to form IHCs and subsequently at the lateral edge to form OHCs, while Hedgehog signaling maintains a space between IHCs and OHCs, leading to formation of the tunnel of Corti. These results reveal dynamic Atoh1 expression in HC fate control and suggest that multi-directional signals regulate OHC induction, thereby organizing the prototype of the organ of Corti.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Cóclea/embriologia , Células Ciliadas Auditivas/citologia , Animais , Padronização Corporal , Proteína Morfogenética Óssea 4/fisiologia , Diferenciação Celular , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/fisiologia , Proteínas Hedgehog/fisiologia , Imageamento Tridimensional , Camundongos , Microscopia de Fluorescência , Microscopia de Vídeo , Órgão Espiral/embriologia , Receptores Notch/fisiologia , Transdução de SinaisRESUMO
Distinct components of working memory are coordinated by different classes of inhibitory interneurons in the PFC, but the role of cholecystokinin (CCK)-positive interneurons remains enigmatic. In humans, this major population of interneurons shows histological abnormalities in schizophrenia, an illness in which deficient working memory is a core defining symptom and the best predictor of long-term functional outcome. Yet, CCK interneurons as a molecularly distinct class have proved intractable to examination by typical molecular methods due to widespread expression of CCK in the pyramidal neuron population. Using an intersectional approach in mice of both sexes, we have succeeded in labeling, interrogating, and manipulating CCK interneurons in the mPFC. Here, we describe the anatomical distribution, electrophysiological properties, and postsynaptic connectivity of CCK interneurons, and evaluate their role in cognition. We found that CCK interneurons comprise a larger proportion of the mPFC interneurons compared with parvalbumin interneurons, targeting a wide range of neuronal subtypes with a distinct connectivity pattern. Phase-specific optogenetic inhibition revealed that CCK, but not parvalbumin, interneurons play a critical role in the retrieval of working memory. These findings shine new light on the relationship between cortical CCK interneurons and cognition and offer a new set of tools to investigate interneuron dysfunction and cognitive impairments associated with schizophrenia.SIGNIFICANCE STATEMENT Cholecystokinin-expressing interneurons outnumber other interneuron populations in key brain areas involved in cognition and memory, including the mPFC. However, they have proved intractable to examination as experimental techniques have lacked the necessary selectivity. To the best of our knowledge, the present study is the first to report detailed properties of cortical cholecystokinin interneurons, revealing their anatomical organization, electrophysiological properties, postsynaptic connectivity, and behavioral function in working memory.
Assuntos
Colecistocinina/fisiologia , Interneurônios/fisiologia , Memória de Curto Prazo/fisiologia , Rememoração Mental/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Comportamento Apetitivo/fisiologia , Aprendizagem por Discriminação/fisiologia , Discriminação Psicológica/fisiologia , Feminino , Genes Reporter , Interneurônios/classificação , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/análise , Odorantes , Optogenética , Parvalbuminas/análise , Técnicas de Patch-Clamp , Recompensa , Esquizofrenia/fisiopatologia , Olfato/fisiologia , Potenciais Sinápticos/fisiologiaRESUMO
Mu opioid receptor (MOR) is involved in various brain functions, such as pain modulation, reward processing, and addictive behaviors, and mediates the main pharmacologic effects of morphine and other opioid compounds. To gain genetic access to MOR-expressing cells, and to study physiological and pathological roles of MOR signaling, we generated a MOR-CreER knock-in mouse line, in which the stop codon of the Oprm1 gene was replaced by a DNA fragment encoding a T2A peptide and tamoxifen (Tm)-inducible Cre recombinase. We show that the MOR-CreER allele undergoes Tm-dependent recombination in a discrete subtype of neurons that express MOR in the adult nervous system, including the olfactory bulb, cerebral cortex, striosome compartments in the striatum, hippocampus, amygdala, thalamus, hypothalamus, interpeduncular nucleus, superior and inferior colliculi, periaqueductal gray, parabrachial nuclei, cochlear nucleus, raphe nuclei, pontine and medullary reticular formation, ambiguus nucleus, solitary nucleus, spinal cord, and dorsal root ganglia. The MOR-CreER mouse line combined with a Cre-dependent adeno-associated virus vector enables robust gene manipulation in the MOR-enriched striosomes. Furthermore, Tm treatment during prenatal development effectively induces Cre-mediated recombination. Thus, the MOR-CreER mouse is a powerful tool to study MOR-expressing cells with conditional gene manipulation in developing and mature neural tissues.
Assuntos
Técnicas de Introdução de Genes/métodos , Receptores Opioides mu/genética , Animais , Encéfalo/metabolismo , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/genética , Camundongos , Modelos Animais , Neurônios/metabolismo , Transdução de Sinais , Medula Espinal/metabolismoRESUMO
The transcription factor Hes family basic helix-loop-helix transcription factor 1 (Hes1) is a downstream effector of Notch signaling and plays a crucial role in orchestrating developmental processes during the embryonic stage. However, its aberrant signaling in adulthood is linked to the pathogenesis of cancer. In the present study, we report the discovery of small organic molecules (JI051 and JI130) that impair the ability of Hes1 to repress transcription. Hes1 interacts with the transcriptional corepressor transducing-like enhancer of split 1 (TLE1) via an interaction domain comprising two tryptophan residues, prompting us to search a chemical library of 1,800 small molecules enriched for indole-like π-electron-rich pharmacophores for a compound that blocks Hes1-mediated transcriptional repression. This screening identified a lead compound whose extensive chemical modification to improve potency yielded JI051, which inhibited HEK293 cell proliferation with an EC50 of 0.3 µm Unexpectedly, using immunomagnetic isolation and nanoscale LC-MS/MS, we found that JI051 does not bind TLE1 but instead interacts with prohibitin 2 (PHB2), a cancer-associated protein chaperone. We also found that JI051 stabilizes PHB2's interaction with Hes1 outside the nucleus, inducing G2/M cell-cycle arrest. Of note, JI051 dose-dependently reduced cell growth of the human pancreatic cancer cell line MIA PaCa-2, and JI130 treatment significantly reduced tumor volume in a murine pancreatic tumor xenograft model. These results suggest a previously unrecognized role for PHB2 in the regulation of Hes1 and may inform potential strategies for managing pancreatic cancer.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Repressoras/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição HES-1/antagonistas & inibidores , Animais , Antineoplásicos/química , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proibitinas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Transcrição Gênica , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
For more than a century, hematoxylin and eosin (H&E) staining has been the de facto standard for histological studies. Consequently, the legacy of histological knowledge is largely based on H&E staining. Due to the recent advent of multi-photon excitation microscopy, the observation of live tissue is increasingly being used in many research fields. Adoption of this technique has been further accelerated by the development of genetically encoded biosensors for ions and signaling molecules. However, H&E-based histology has not yet begun to fully utilize in vivo imaging due to the lack of proper morphological markers. Here, we report a genetically encoded fluorescent marker, NuCyM (Nucleus, Cytosol, and Membrane), which is designed to recapitulate H&E staining patterns in vivo. We generated a transgenic mouse line ubiquitously expressing NuCyM by using a ROSA26 bacterial artificial chromosome (BAC) clone. NuCyM evenly marked the plasma membrane, cytoplasm and nucleus in most tissues, yielding H&E staining-like images. In the NuCyM-expressing cells, cell division of a single cell was clearly observed as five basic phases during M phase by three-dimensional imaging. We next crossed NuCyM mice with transgenic mice expressing an ERK biosensor based on the principle of Förster resonance energy transfer (FRET). Using NuCyM, ERK activity in each cell could be extracted from the FRET images. To further accelerate the image analysis, we employed machine learning-based segmentation methods, and thereby automatically quantitated ERK activity in each cell. In conclusion, NuCyM is a versatile cell morphological marker that enables us to grasp histological information as with H&E staining.Key words: in vivo imaging, histology, machine learning, molecular activity.
Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Imageamento Tridimensional/métodos , Sistema de Sinalização das MAP Quinases , Aprendizado de Máquina , Análise de Célula Única/métodos , Animais , Cães , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência/métodosRESUMO
Stem cells do not all respond the same way, but the mechanisms underlying this heterogeneity are not well understood. Here, we found that expression of Hes1 and its downstream genes oscillate in mouse embryonic stem (ES) cells. Those expressing low and high levels of Hes1 tended to differentiate into neural and mesodermal cells, respectively. Furthermore, inactivation of Hes1 facilitated neural differentiation more uniformly at earlier time. Thus, Hes1-null ES cells display less heterogeneity in both the differentiation timing and fate choice, suggesting that the cyclic gene Hes1 contributes to heterogeneous responses of ES cells even under the same environmental conditions.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Inativação Gênica , Camundongos , Neurônios/citologia , Receptores Notch/metabolismo , Fatores de Transcrição HES-1RESUMO
Somites, metameric structures, give rise to the vertebral column, ribs, skeletal muscles and subcutaneous tissues. In mouse embryos, a pair of somites is formed every 2h by segmentation of the anterior parts of the presomitic mesoderm. This periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 oscillation is regulated by negative feedback with a delayed timing. This process has been mathematically simulated by differential-delay equations, which predict that negative feedback with shorter delays would abolish oscillations or produce dampened but more rapid oscillations. We found that reducing the number of introns within the Hes7 gene shortens the delay and abolishes Hes7 oscillation or results in a more rapid tempo of Hes7 oscillation, increasing the number of somites and vertebrae in the cervical and upper thoracic region. We also found that Hes1, a Hes7-related gene, is expressed in an oscillatory manner by many cell types, including fibroblasts and neural stem cells. In these cells, Hes1 expression oscillates with a period of about 2-3h, and this oscillation is important for cell cycle progression. Furthermore, in neural stem cells, Hes1 oscillation drives cyclic expression of the proneural genes Ascl1 and Neurogenin2 and regulates multipotency. Hes1 expression oscillates more slowly in embryonic stem cells, and Hes1 oscillation regulates their fate preferences. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) is important for many biological events.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Homeodomínio/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ritmo Circadiano , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/fisiologia , Estabilidade Proteica , Transdução de Sinais , Fatores de Transcrição HES-1RESUMO
Mechanosensory hair cells and supporting cells develop from common precursors located in the prosensory domain of the developing cochlear epithelium. Prosensory cell differentiation into hair cells or supporting cells proceeds from the basal to the apical region of the cochleae, but the mechanism and significance of this basal-to-apical wave of differentiation remain to be elucidated. Here, we investigated the role of Hedgehog (Hh) signaling in cochlear development by examining the effects of up- and downregulation of Hh signaling in vivo. The Hh effector smoothened (Smo) was genetically activated or inactivated specifically in the developing cochlear epithelium after prosensory domain formation. Cochleae expressing a constitutively active allele of Smo showed only one row of inner hair cells with no outer hair cells (OHCs); abnormal undifferentiated prosensory-like cells were present in the lateral compartment instead of OHCs and their adjacent supporting cells. This suggests that Hh signaling inhibits prosensory cell differentiation into hair cells or supporting cells and maintains their properties as prosensory cells. Conversely, in cochlea with the Smo conditional knockout (Smo CKO), hair cell differentiation was preferentially accelerated in the apical region. Smo CKO mice survived after birth, and exhibited hair cell disarrangement in the apical region, a decrease in hair cell number, and hearing impairment. These results indicate that Hh signaling delays hair cell and supporting cell differentiation in the apical region, which forms the basal-to-apical wave of development, and is required for the proper differentiation, arrangement and survival of hair cells and for hearing ability.
Assuntos
Diferenciação Celular , Polaridade Celular , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Proteínas Hedgehog/metabolismo , Mamíferos/metabolismo , Transdução de Sinais , Animais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Polaridade Celular/genética , Epitélio/embriologia , Epitélio/metabolismo , Epitélio/patologia , Potenciais Evocados Auditivos do Tronco Encefálico , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Perda Auditiva/fisiopatologia , Proteínas Hedgehog/genética , Camundongos , Camundongos Knockout , Morfogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Receptor SmoothenedRESUMO
The olfactory bulb (OB) is one of the two major loci in the mammalian brain where newborn neurons are constantly integrated into the neural circuit during postnatal life. Newborn neurons are generated from neural stem cells in the subventricular zone (SVZ) of the lateral ventricle and migrate to the OB through the rostral migratory stream. The majority of these newborn neurons differentiate into inhibitory interneurons, such as granule cells and periglomerular cells. It has been reported that prolonged supply of newborn neurons leads to continuous addition/turnover of the interneuronal populations and contributes to functional integrity of the OB circuit. However, it is not still clear how and to what extent postnatal-born neurons contribute to OB neural circuit formation, and the functional role of postnatal neurogenesis in odor-related behaviors remains elusive. To address this question, here by using genetic strategies, we first determined the unique integration mode of newly born interneurons during postnatal development of the mouse OB. We then manipulated these interneuron populations and found that continuous postnatal neurogenesis in the SVZ-OB plays pivotal roles in flexible olfactory associative learning and memory.
Assuntos
Aprendizagem por Associação/fisiologia , Rede Nervosa/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Percepção Olfatória/fisiologia , Animais , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/fisiologia , Giro Denteado/citologia , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/fisiologia , Interneurônios/citologia , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurônios/citologia , Odorantes , Bulbo Olfatório/citologia , Bulbo Olfatório/crescimento & desenvolvimentoRESUMO
Notch signaling regulates intestinal development, homeostasis and tumorigenesis, but its precise downstream mechanism remains largely unknown. Here we found that inactivation of the Notch effectors Hes1, Hes3 and Hes5, but not Hes1 alone, led to reduced cell proliferation, increased secretory cell formation and altered intestinal structures in adult mice. However, in Apc mutation-induced intestinal tumors, inactivation of Hes1 alone was sufficient for reducing tumor cell proliferation and inducing differentiation of tumor cells into all types of intestinal epithelial cells, but without affecting the homeostasis of normal crypts owing to genetic redundancy. These results indicated that Hes genes cooperatively regulate intestinal development and homeostasis and raised the possibility that Hes1 is a promising target to induce the differentiation of tumor cells.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Homeodomínio/genética , Neoplasias Intestinais/genética , Intestino Grosso/crescimento & desenvolvimento , Intestino Delgado/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/genética , Animais , Diferenciação Celular/genética , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica , Células Epiteliais/metabolismo , Genes APC , Neoplasias Intestinais/patologia , Intestino Grosso/citologia , Intestino Grosso/metabolismo , Intestino Grosso/patologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos , Camundongos Knockout , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Fatores de Transcrição HES-1RESUMO
The basic helix-loop-helix factors Hes1 and Hes5 repress the expression of proneural factors such as Ascl1, thereby inhibiting neuronal differentiation and maintaining neural progenitor cells (NPCs). Hes1 expression oscillates by negative feedback with a period of about 2-3 h in proliferating NPCs. Induction of sustained expression of Hes1 in NPCs inhibits their cell-cycle progression, suggesting that the oscillatory expression of Hes1 is important for the proliferation of NPCs. Hes1 oscillation drives the oscillatory expression of proneural factors such as Ascl1 by periodic repression. By contrast, in differentiating neurons, Hes1 expression disappears and the expression of proneural factors is up-regulated and sustained. A new optogenetics approach that induces Ascl1 expression by blue light illumination demonstrated that sustained expression of Ascl1 induces neuronal differentiation, whereas oscillatory expression of Ascl1 activates the proliferation of NPCs. These results together indicate that Hes1 regulates the oscillatory versus sustained expression of the proneural factor Ascl1, which in turn regulates the proliferation of NPCs and the subsequent processes of cell-cycle exit and neuronal fate determination, depending on the expression dynamics.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Neurogênese , Animais , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Optogenética , Receptores Notch/metabolismoRESUMO
Notch signaling plays crucial roles in fate determination and the differentiation of neural stem cells in embryonic and adult brains. It is now clear that the notch pathway is under more complex and dynamic regulation than previously thought. To understand the functional details of notch signaling more precisely, it is important to reveal when, where, and how notch signaling is dynamically communicated between cells, for which the visualization of notch signaling is essential. In this review, we introduce recent technical advances in the visualization of notch signaling during neural development and in the adult brain, and we discuss the physiological significance of dynamic regulation of notch signaling.
Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Regulação da Expressão Gênica/fisiologia , Neurogênese/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde , Humanos , Luciferases , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Neurogênese/genética , Receptores Notch/genética , Transdução de Sinais/genética , beta-GalactosidaseRESUMO
Although the functional significance of adult neurogenesis in hippocampal-dependent learning and memory has been well documented, the role of such neurogenesis in olfactory activity is rather obscure. To understand the significance of adult neurogenesis in olfactory functions, we genetically ablated newly born neurons by using tamoxifen-treated Nestin-CreER(T2);neuron-specific enolase-diphtheria toxin fragment A (NSE-DTA) mice. In these mice, tamoxifen-inducible Cre recombinase allows the NSE (Eno2) gene to drive DTA expression in differentiating neurons, leading to the efficient ablation of newly born neurons in the forebrain. These mutant mice were capable of discriminating odors as competently as control mice. Strikingly, although control and mutant mice frequently showed freezing behaviors to a fox scent, a predator odor, mutant mice approached this odor when they were conditioned to associate the odor with a reward, whereas control mice did not approach the odor. Furthermore, although mutant males and females showed normal social recognition behaviors to other mice of a different sex, mutant males displayed deficits in male-male aggression and male sexual behaviors toward females, whereas mutant females displayed deficits in fertility and nurturing, indicating that sex-specific activities, which are known to depend on olfaction, are impaired. These results suggest that continuous neurogenesis is required for predator avoidance and sex-specific responses that are olfaction dependent and innately programmed.
Assuntos
Envelhecimento , Discriminação Psicológica/fisiologia , Neurogênese/fisiologia , Percepção Olfatória/fisiologia , Prosencéfalo/fisiologia , Animais , Condicionamento Clássico/fisiologia , Feminino , Reação de Congelamento Cataléptica , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Mutantes , Olfato/fisiologiaRESUMO
Innate and goal-directed movements require a high-degree of trunk and appendicular muscle coordination to preserve body stability while ensuring the correct execution of the motor action. The spinal neural circuits underlying motor execution and postural stability are finely modulated by propriospinal, sensory and descending feedback, yet how distinct spinal neuron populations cooperate to control body stability and limb coordination remains unclear. Here, we identified a spinal microcircuit composed of V2 lineage-derived excitatory (V2a) and inhibitory (V2b) neurons that together coordinate ipsilateral body movements during locomotion. Inactivation of the entire V2 neuron lineage does not impair intralimb coordination but destabilizes body balance and ipsilateral limb coupling, causing mice to adopt a compensatory festinating gait and be unable to execute skilled locomotor tasks. Taken together our data suggest that during locomotion the excitatory V2a and inhibitory V2b neurons act antagonistically to control intralimb coordination, and synergistically to coordinate forelimb and hindlimb movements. Thus, we suggest a new circuit architecture, by which neurons with distinct neurotransmitter identities employ a dual-mode of operation, exerting either synergistic or opposing functions to control different facets of the same motor behavior.
RESUMO
Animals are capable of representing different scale spaces from smaller to larger ones. However, most laboratory animals live their life in a narrow range of scale spaces like homecages and experimental setups, making it hard to extrapolate the spatial representation and learning process in large scale spaces from those in conventional scale spaces. Here, we developed a 3-m diameter Barnes maze (BM3), then explored whether spatial learning in the Barnes maze (BM) is calibrated by scale spaces. Spatial learning in the BM3 was successfully established with a lower learning rate than that in a conventional 1-m diameter Barnes maze (BM1). Specifically, analysis of exploration strategies revealed that the mice in the BM3 persistently searched certain places throughout the learning, while such places were rapidly decreased in the BM1. These results suggest dedicated exploration strategies requiring more trial-and-errors and computational resources in the BM3 than in the BM1, leading to a divergence of spatial learning between the BM1 and the BM3. We then explored whether prior learning in one BM scale calibrates subsequent spatial learning in another BM scale, and found asymmetric facilitation such that the prior learning in the BM3 facilitated the subsequent BM1 learning, but not vice versa. Thus, scale space calibrates both the present and subsequent BM learning. This is the first study to demonstrate scale-dependent spatial learning in BM in mice. The couple of the BM1 and the BM3 would be a suitable system to seek how animals represent different scale spaces with underlying neural implementation.