Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38539762

RESUMO

A mirror subjected to a fast mechanical oscillation emits photons out of the quantum vacuum-a phenomenon known as the dynamical Casimir effect (DCE). The mirror is usually treated as an infinite metallic surface. Here, we show that, in realistic experimental conditions (mirror size and oscillation frequency), this assumption is inadequate and drastically overestimates the DCE radiation. Taking the opposite limit, we use instead the dipolar approximation to obtain a simpler and more realistic treatment of DCE for macroscopic bodies. Our approach is inspired by a microscopic theory of DCE, which is extended to the macroscopic realm by a suitable effective Hamiltonian description of moving anisotropic scatterers. We illustrate the benefits of our approach by considering the DCE from macroscopic bodies of different geometries.

2.
Entropy (Basel) ; 25(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37761555

RESUMO

We discuss the emulation of non-Hermitian dynamics during a given time window using a low-dimensional quantum system coupled to a finite set of equidistant discrete states acting as an effective continuum. We first emulate the decay of an unstable state and map the quasi-continuum parameters, enabling the precise approximation of non-Hermitian dynamics. The limitations of this model, including in particular short- and long-time deviations, are extensively discussed. We then consider a driven two-level system and establish criteria for non-Hermitian dynamics emulation with a finite quasi-continuum. We quantitatively analyze the signatures of the finiteness of the effective continuum, addressing the possible emergence of non-Markovian behavior during the time interval considered. Finally, we investigate the emulation of dissipative dynamics using a finite quasi-continuum with a tailored density of states. We show through the example of a two-level system that such a continuum can reproduce non-Hermitian dynamics more efficiently than the usual equidistant quasi-continuum model.

3.
Phys Rev Lett ; 127(27): 270401, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35061441

RESUMO

We report on the quantum electrodynamical analog of a Sagnac phase induced by the fast rotation of a neutral nanoparticle onto atomic waves propagating in its vicinity. The quantum vacuum Sagnac phase is a geometric Berry phase proportional to the angular velocity of rotation. The persistence of a noninertial effect into the inertial frame is also analogous to the Aharonov-Bohm effect. Here, a rotation confined to a restricted domain of space gives rise to an atomic phase even though the interferometer is at rest with respect to an inertial frame. By taking advantage of a plasmon resonance, we show that the magnitude of the induced phase can be close to the sensitivity limit of state of the art interferometers. The quantum vacuum Sagnac atomic phase is a geometric footprint of a dynamical Casimir-like effect.

4.
Phys Rev Lett ; 124(25): 250403, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639754

RESUMO

The propagation of matter waves in curved geometry is relevant for ion transport, atomtronics and electrons in nanowires. Curvature effects are usually addressed within the adiabatic limit and treated via an effective potential acting on the manifold to which the particles are strongly confined. However, the strength of the confinements that can be achieved experimentally are limited in practice, and the adiabatic approximation often appears too restrictive for realistic guides. Here, we work out a design method for 2D sharply bent waveguides beyond this approximation using an exact inverse-engineering technique. The efficiency of the method is confirmed by the resolution of the 2D nonlinear Schrödinger equation in curved geometry. In this way, we realize reflectionless and ultrarobust curved guides, even in the presence of interactions. Here, the transverse stability is improved by several orders of magnitude when compared to circular guides of similar size.

5.
Proc Natl Acad Sci U S A ; 114(48): 12691-12695, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133425

RESUMO

We report the results of the direct comparison of a freely expanding turbulent Bose-Einstein condensate and a propagating optical speckle pattern. We found remarkably similar statistical properties underlying the spatial propagation of both phenomena. The calculated second-order correlation together with the typical correlation length of each system is used to compare and substantiate our observations. We believe that the close analogy existing between an expanding turbulent quantum gas and a traveling optical speckle might burgeon into an exciting research field investigating disordered quantum matter.

6.
Sci Rep ; 13(1): 453, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624171

RESUMO

Synchronization is a major concept in nonlinear physics. In a large number of systems, it is observed at long times for a sinusoidal excitation. In this paper, we design a transiently non-sinusoidal driving to reach the synchronization regime more quickly. We exemplify an inverse engineering method to solve this issue on the classical Van der Pol oscillator. This approach cannot be directly transposed to the quantum case as the system is no longer point-like in phase space. We explain how to adapt our method by an iterative procedure to account for the finite-size quantum distribution in phase space. We show that the resulting driving yields a density matrix close to the synchronized one according to the trace distance. Our method provides an example of fast control of a nonlinear quantum system, and raises the question of the quantum speed limit concept in the presence of nonlinearities.

7.
Sci Rep ; 9(1): 4048, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858537

RESUMO

We report on a systematic geometric procedure, built up on solutions designed in the absence of dissipation, to mitigate the effects of dissipation in the control of open quantum systems. Our method addresses a standard class of open quantum systems that encompasses non-Hermitian Hamiltonians. It provides the analytical expression of the extra magnetic field to be superimposed to the driving field in order to compensate the geometric distortion induced by dissipation for spin systems, and produces an exact geometric optimization of fast population transfer. Interestingly, it also preserves the robustness properties of protocols originally optimized against noise. Its extension to two interacting spins restores a fidelity close to unity for the fast generation of Bell state in the presence of dissipation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA