Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Small ; : e2402528, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845027

RESUMO

The crystal structure and phase stability of a host lattice plays an important role in efficient upconversion phenomena. In stable hosts, lanthanides doping should not generally change the crystal structure of the host itself. But when phase of a system drastically changes after lanthanide doping resulting in multiple phases, accurate identification of upconverting phase remains a challenge. Herein, an attempt to synthesize lanthanide-doped NiMoO4 by microwave hydrothermal method produced MoO3/Yb2Mo4O15/NiMoO4 micro-nano composite upconversion phosphor. A combined approach of density functional theory (DFT) calculations and single-particle-level upconversion imaging has been employed to elucidate the phase stability of different phases and upconversion properties within the composite. Through single-particle-level imaging under 980 nm excitation, an unprecedented resolution in visualizing individual emitting and non-emitting regions within the composite has been achieved, thereby allowing to accurately assign the Yb2Mo4O15 as a sole upconversion emitting phase in the composite. Result of the DFT calculation further shows that the Yb2Mo4O15 phase is the most thermodynamically preferred over other lanthanide-doped phases in the composite. This comprehensive understanding not only advances the knowledge of upconversion emission from composite materials but also holds promise for tailoring optical properties of materials for various applications, including bioimaging, sensing, and photonics, where controlled light emission is crucial.

2.
Anal Chem ; 93(24): 8638-8646, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34110775

RESUMO

In situ wireless monitoring for cell proliferation and detachment kinetics was conducted using pH-responsive zwitterionic polymer dots (Z-PDs), based on changes in electrochemical signals derived from Z-PD-coated substrates via the interaction of charges transferred between Z-PDs and cells. Z-PD-coated substrates were found to be a potent means to monitor and manipulate cell adhesion and detachment because of their high sensitivity over a wide range of pH conditions, and modification of the coated substrates was confirmed using a wireless system. At neutral pH, Z-PD-coated wireless sensors exhibited π-π stacking involving aromatic rings with hydrophobic interactions, thereby promoting cell proliferation; consequently, an increase in the measured resistance was observed. In contrast, Z-PD-coated substrates triggered by acidic and basic conditions promoted cell detachment, which induced an increase in the resistance compared with Z-PD substrates at pH 6.8, as a result of charges transferred to support Z-PD internalization through cell membranes after detachment. Therefore, as a wireless biosensor with excellent pH responsiveness that facilitates cell proliferation and detachment and whose electrochemical signals could be additionally acquired via a smartphone, Z-PD biosensors demonstrated a more favorable approach for monitoring cell-surface interactions than conventional optically based methods.


Assuntos
Polímeros , Proliferação de Células , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
3.
Nanotechnology ; 29(16): 165604, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29406321

RESUMO

A novel mechanochemical method was firstly developed to synthesize carbon nanodots (CNDs) or carbon nano-onions (CNOs) through high-pressure homogenization of cellulose powders as naturally abundant resource depending on the treatment times. While CNDs (less than 5 nm in size) showed spherical and amorphous morphology, CNOs (10-50 nm in size) presented polyhedral shape, and onion-like outer lattice structure, graphene-like interlattice spacing of 0.36 nm. CNOs showed blue emissions, moderate dispersibility in aqueous media, and high cell viability, which enables efficient fluorescence imaging of cellular media.

4.
Luminescence ; 33(1): 40-46, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28719145

RESUMO

This work derived biocompatible and stable probes based on fluorescent nanoparticles (FNPs) from a natural source, Curcuma longa. The multi-color fluorescence emissions from carbonized Curcuma longa (C-FNPs) obtained through defined dehydration conditions are soluble in water and have a small particle size (~17 nm). The surface passivation with polyethylene glycol (PEG) capped with amine groups in FNPs (P-FNPs) generated a probe with a higher quantum yield and longer fluorescence lifetime than obtained with C-FNPs. The X-ray photoelectron spectroscopy and X-ray diffraction spectra confirmed the associated chemical moieties of C-FNPs and P-FNPs. Furthermore, the prepared material showed non-toxic effects with almost 100% cell viability, even at high concentrations. In conclusion, fluorescence sensors from natural sources may be useful for numerous biomedical research applications.


Assuntos
Materiais Biocompatíveis/química , Carbono/química , Curcuma/química , Corantes Fluorescentes/química , Nanopartículas/química , Pontos Quânticos , Animais , Sobrevivência Celular , Cães , Humanos , Células KB , Células Madin Darby de Rim Canino , Tamanho da Partícula , Espectrometria de Fluorescência , Propriedades de Superfície
5.
Anal Chem ; 89(24): 13508-13517, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29137454

RESUMO

The tumor-specific sensitive fluorescence sensing of cellular alkaline phosphatase (ALP) activity on the basis of host-guest specific and pH sensitivity was conducted on coated surfaces and aqueous states. Cross-linked fluorescent nanoparticles (C-FNP) consisting of ß-cyclodextrin (ß-CD)/boronic acid (BA) and fluorescent hyaluronic acid [FNP(HA)] were conjugated to fluorescent polydopamine [FNP(pDA)]. To determine the quenching effect of this system, hydrolysis of 4-nitrophenyl phosphate (NPP) to 4-nitrophenol (NP) was performed in the cavity of ß-CD in the presence of ALP activated photoinduced electron transfer (PET) between NP and C-FNP. At an ALP level of 30-1000 U/L, NP caused off-emission of C-FNP because of their specific host-guest recognition. Fluorescence can be recovered under pH shock due to cleavage of the diol bond between ß-CD and BA, resulting in release of NP from the fluorescent system. Sensitivity of the assays was assessed by confocal imaging not only in aqueous states, but also for the first time on coated surfaces in MDAMB-231 and MDCK cells. This novel system demonstrated high sensitivity to ALP through generation of good electron donor/acceptor pair during the PET process. Therefore, this fluorescence sensor system can be used to enhance ALP monitoring and cancer diagnosis on both coated surfaces and in aqueous states in clinical settings.


Assuntos
Fosfatase Alcalina/metabolismo , Carbono/química , Reagentes de Ligações Cruzadas/química , Corantes Fluorescentes/química , Indóis/química , Nanopartículas/química , Polímeros/química , Animais , Linhagem Celular Tumoral , Cães , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Células Madin Darby de Rim Canino , Nitrofenóis/química , Nitrofenóis/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Tamanho da Partícula , Soluções , Propriedades de Superfície , Água/química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/metabolismo
6.
Biomacromolecules ; 18(6): 1825-1835, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28481511

RESUMO

In cancer therapy, optimizing tumor-specific delivery, tumor distribution, and cellular uptake of a drug is important for ensuring minimal toxicity and maximum therapeutic efficacy. This study characterized the therapeutic efficacy of a stimulus responsive and dual targeting nanocarrier for a bioimaging-guided photothermal and chemotherapeutic platform. Hyaluronic acid (HA) conjugated with triphenylphosphonium (TPP) and boronic acid (BA) diol-linked ß-cyclodextrin (ß-CD) forms an inclusion complex with paclitaxel (PTX), creating a shell-like composite on a core of carbonized fluorescent polydopamine nanoparticles (FNPs-pDA) applicable for photothermal therapy as well as bioimaging. The successful diol cross-linking between core@shells generates nanocarriers [FNPs-pDA@HA-TPP-CD-PTX] that can be used as an extracellular HA- and intracellular TPP-mediated dual targeting system. The carbonized FNPs-pDA was cross-linked with the boronic acid groups of HA-TPP-CD-PTX to promote the formation of boronate esters for pH-mediated photothermal activity, which have shown time dependent complete PTX release along with a photothermal mediated response. The in vitro dual bioimaging and photothermal-chemotherapeutic activities were compared between cancer and normal cells. Lysosomal escape and live/dead cells staining confocal images highlight the promise of this system, which might open up a new approach, a simple and versatile method for site-specific synergetic drug delivery.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Portadores de Fármacos , Ácido Hialurônico/química , Indóis/química , Nanopartículas/química , Paclitaxel/farmacologia , Polímeros/química , Animais , Ácidos Borônicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cães , Composição de Medicamentos/métodos , Humanos , Receptores de Hialuronatos/metabolismo , Concentração de Íons de Hidrogênio , Raios Infravermelhos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Células Madin Darby de Rim Canino , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Oniocompostos/química , Processos Fotoquímicos , Compostos de Tritil/química , beta-Ciclodextrinas/química
7.
Nanotechnology ; 28(12): 125603, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28220763

RESUMO

We report the characterization and formation of sonication-assisted liquid phase exfoliation of bulk black phosphorus (BP) crystals with the incorporation of two representative ionic liquids (ILs) ([Emim][Tf2N] and [Bmim][Tf2N]) as green dispersing media was attempted, which resulted in stable dispersion of multi-layer BP flakes with unsuspected high oxidation resistance and chemical/structural integrity due to the presence of IL layer on top of BP flakes. There are two unveiled issues for the generation of BP dispersion in ILs. First, thin films of BP flakes can be simply prepared through our approach. Because self-oxidation of BP in ambient condition can be significantly minimized in ILs, vacuum filtration step can be adopted to produce BP thin films in ambient condition. Second, the binding of IL molecules on BP flakes has been firstly demonstrated by the time-of-flight secondary ion mass spectrometry characterization. In addition to the exploitation of ILs as the green solvents with less environmental harmfulness, IL-based exfoliation of BP might be easily scalable because harsh control of atmospheric oxygen and moisture is unnecessary in this approach.

8.
Nanotechnology ; 27(47): 475705, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27779130

RESUMO

We report the characterization and formation of catechol-terminated molecules immobilized on gold nanoplates (Au NPLs) using N-(3,4-dihydroxyphenethyl)-2-mercaptoacetamide (Cat-EAA-SH). Single-crystalline Au NPLs, synthesized using a one-step chemical vapor transport method, have ultraclean and ultraflat surfaces that make Cat-EAA-SH molecules aligned into a well-ordered network of a large-scale. Topographic study of the catechol-terminated molecules on Au NPLs using atomic force microscopy showed more orderly orientation and higher density, leading to significantly higher adhesion as observed from local force-distance curves than those on other Au surfaces. These coherently aligned catechol-terminated molecules on the atomically smooth gold surface led to significanty more reproducible and thus more physico-chemically meaningful measurements than was possible before by employing rough gold surfaces.

9.
Luminescence ; 31(3): 897-904, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26492942

RESUMO

Polymer dots (PDs) showing concentration-mediated multicolor fluorescence were first prepared from sulfuric acid-treated dehydration of Pluronic® F-127 in a single step. Pluronic-based PDs (P-PDs) showed high dispersion stability in solvent media and exhibited a fluorescence emission that was widely tunable from red to blue by adjusting both the excitation wavelengths and the P-PD concentration in an aqueous solution. This unique fluorescence behavior of P-PDs might be a result of cross-talk in the fluorophores of the poly(propylene glycol)-rich core inside the P-PD through either energy transfer or charge transfer. Reconstruction of the surface energy traps of the P-PDs mediated through aggregation may lead to a new generation of carbon-based nanomaterials possessing a fluorescence emission and tunable by adjusting the concentration. These structures may be useful in the design of multifunctional carbon nanomaterials with tunable emission properties according to a variety of internal or external stimuli.


Assuntos
Carbono/química , Fluorescência , Corantes Fluorescentes/química , Poloxâmero/química , Polímeros/química , Propilenoglicóis/química , Corantes Fluorescentes/síntese química , Poloxâmero/síntese química , Polímeros/síntese química , Propilenoglicóis/síntese química
10.
Biomacromolecules ; 16(11): 3519-29, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26451914

RESUMO

Despite the tremendous progress that photothermal therapy (PTT) has recently achieved, it still has a long way to go to gain the effective targeted photothermal ablation of tumor cells. Driven by this need, we describe a new class of targeted photothermal therapeutic agents for cancer cells with pH responsive bioimaging using near-infrared dye (NIR) IR825, conjugated poly(ethylene glycol)-g-poly(dimethylaminoethyl methacrylate) (PEG-g-PDMA, PgP), and hyaluronic acid (HA) anchored reduced graphene oxide (rGO) hybrid nanoparticles. The obtained rGO nanoparticles (PgP/HA-rGO) showed pH-dependent fluorescence emission and excellent near-infrared (NIR) irradiation of cancer cells targeted in vitro to provide cytotoxicity. Using intravenously administered PTT agents, the time-dependent in vivo tumor target accumulation was exactly defined, presenting eminent photothermal conversion at 4 and 8 h post-injection, which was demonstrated from the ex vivo biodistribution of tumors. These tumor environment responsive hybrid nanoparticles generated photothermal heat, which caused dominant suppression of tumor growth. The histopathological studies obtained by H&E staining demonstrated complete healing from malignant tumor. In an area of limited successes in cancer therapy, our translation will pave the road to design stimulus environment responsive targeted PTT agents for the safe eradication of devastating cancer.


Assuntos
Grafite/química , Nanopartículas/química , Neoplasias/terapia , Fototerapia/métodos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Cães , Grafite/farmacocinética , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Concentração de Íons de Hidrogênio , Células Madin Darby de Rim Canino , Metacrilatos/química , Metacrilatos/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanocompostos/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Espectroscopia de Luz Próxima ao Infravermelho , Distribuição Tecidual
11.
Nanotechnology ; 26(10): 105601, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25687589

RESUMO

Gold nanoparticle (AuNP)-decorated boron nitride nanosheet (BNNS) was successfully prepared through the simultaneous reduction of Au(3+) ions and the growth of AuNPs on polydopamine (PDA)-grafted BNNS. Both BNNS-AuNP and PDA-BNNS are successfully synthesized in an aqueous buffer solution (pH 8.5) in the absence of any chemical reducing agent and organic reaction, which is therefore environmentally friendly and highly beneficial for the mass production of green catalysts from 2D nanomaterials. BNNS-AuNP showed remarkable dispersion stability in aqueous media and revealed high catalytic efficiency for the reduction of nitrophenol as (4-NP) into 4-aminophenol (4-AP) within 8 min in water. The 2D structural feature of BNNS-AuNP also enables isolation and recycling of catalyst from 4-AP through the ultracentrifugation, which shows the retention of more than 60% of catalytic activity of BNNS-AuNP after five repetitions of the of recycling steps.

12.
Nanotechnology ; 26(37): 375602, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26313887

RESUMO

Stable dispersion of quasi-2D graphene sheets with a concentration up to 1.27 mg mL(-1) was prepared by sonication-assisted solvent exfoliation of pitch-based carbon fiber in N-methyl pyrrolidone with the mass yield of 2.32%. Prepared quasi-2D graphene sheets have multi-layered 2D plate-like morphology with rich inclusions of graphitic carbons, a low number of structural defects, and high dispersion stability in aprotic polar solvents, and facilitate the utilization of quasi-2D graphene sheets prepared from pitch-based carbon fiber for various electronic and structural applications. Thin films of quasi-2D graphene sheets prepared by vacuum filtration of the dispersion of quasi-2D graphene sheets demonstrated electrical conductivity up to 1.14 × 10(4) Ω/□ even without thermal treatment, which shows that pitch-based carbon fiber might be useful as the source of graphene-related nanomaterials. Because pitch-based carbon fiber could be prepared from petroleum pitch, a very cheap structural material for the pavement of asphalt roads, our approach might be promising for the mass production of quasi-2D graphene nanomaterials.

13.
Nanotechnology ; 25(44): 445603, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25325352

RESUMO

Boron nitride nanosheet (BNNS) decorated with silver nanoparticles (AgNPs) was successfully synthesized via mussel-inspired chemistry of dopamine. Poly(dopamine)-functionalized BNNS (PDA-BNNS) was prepared by adding dopamine into the aqueous dispersion of hydroxylated BNNS (OH-BNNS) at alkaline condition. AgNPs were decorated on PDA-BNNS through spontaneous reduction of silver cations by catechol moieties of a PDA layer on BNNS, resulting in AgNP-BNNS with good dispersion stability. Incorporation of PDA on BNNS not only played a role as a surface functionalization method of BNNS, but also provided a molecular platform for creating very sophisticated two-dimensional (2D) BNNS-based hybrid nanomaterials such as metal nanoparticle-decorated BNNS.


Assuntos
Compostos de Boro/química , Dopamina/química , Nanopartículas/química , Prata/química , Antibacterianos/química , Antibacterianos/uso terapêutico , Humanos , Hidroxilação , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanopartículas/uso terapêutico , Nanopartículas/ultraestrutura
14.
Nanoscale Horiz ; 9(8): 1301-1310, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38808378

RESUMO

The increasing demand for natural and safer alternatives to traditional hair dyes has led to the investigation of nanomaterials as potential candidates for hair coloring applications. MXene nanosheets have emerged as a promising alternative in this context due to their unique optical and electronic properties. In this study, we aimed to evaluate the potential of Ti3C2Tx (Tx = -O, -OH, -F, etc.) MXene nanosheets as a hair dye. MXene nanosheet-based dyes have been demonstrated to exhibit not only coloring capabilities but also additional properties such as antistatic properties, heat dissipation, and electromagnetic wave shielding. Additionally, surface modification of MXene using collagen reduces the surface roughness of hair and upregulates keratinocyte markers KRT5 and KRT14, demonstrating the potential for tuning its physicochemical and biological properties. This conceptual advancement highlights the potential of MXene nanosheets to go beyond simple cosmetic improvements and provide improved comfort and safety by preventing the presence of hazardous ingredients and solvents while providing versatility.

15.
Nat Commun ; 15(1): 3459, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658566

RESUMO

Establishing dependable, cost-effective electrical connections is vital for enhancing device performance and shrinking electronic circuits. MXenes, combining excellent electrical conductivity, high breakdown voltage, solution processability, and two-dimensional morphology, are promising candidates for contacts in microelectronics. However, their hydrophilic surfaces, which enable spontaneous environmental degradation and poor dispersion stability in organic solvents, have restricted certain electronic applications. Herein, electrohydrodynamic printing technique is used to fabricate fully solution-processed thin-film transistors with alkylated 3,4-dihydroxy-L-phenylalanine functionalized Ti3C2Tx (AD-MXene) as source, drain, and gate electrodes. The AD-MXene has excellent dispersion stability in ethanol, which is required for electrohydrodynamic printing, and maintains high electrical conductivity. It outperformed conventional vacuum-deposited Au and Al electrodes, providing thin-film transistors with good environmental stability due to its hydrophobicity. Further, thin-film transistors are integrated into logic gates and one-transistor-one-memory cells. This work, unveiling the ligand-functionalized MXenes' potential in printed electrical contacts, promotes environmentally robust MXene-based electronics (MXetronics).

16.
Mol Pharm ; 10(10): 3736-44, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24007260

RESUMO

This work demonstrates the way to achieve efficient and target specific delivery of a graphene quantum dot (GQD) using hyaluronic acid (HA) (GQD-HA) as a targeting agent. HA has been anchored to a GQD that accepts the fascinating adhesive properties of the catechol moiety, dopamine hydrochloride, conjugated to HA, which was confirmed by X-ray photoelectron spectroscopy. Transmission electron microscopy revealed a particle size of ∼20 nm, and the fluorescence spectra revealed significant fluorescence intensity even after the anchoring of HA. The prepared GQD-HA was applied to CD44 receptor overexpressed tumor-bearing balb/c female mice, and the in vivo biodistribution investigation demonstrated more bright fluorescence from the tumor tissue. In vitro cellular imaging, via a confocal laser scanning microscope, exhibited strong fluorescence from CD44 overexpressed A549 cells. Both in vivo and in vitro results showed the effectiveness of using HA as targeting molecule. The loading and release kinetics of the hydrophobic drug doxorubicin from a GQD under mildly acidic conditions showed that a GQD can be considered as a novel drug carrier, while the nontoxic behavior from the MTT assay strongly supports the identification of GQD-HA as a biocompatible material.


Assuntos
Diagnóstico por Imagem/métodos , Grafite/química , Ácido Hialurônico/química , Pontos Quânticos/química , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Cães , Dopamina/química , Portadores de Fármacos/química , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
17.
Macromol Rapid Commun ; 34(17): 1408-15, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23900997

RESUMO

This paper demonstrates the development of pH and thermo-responsive fluorescent nanoparticles, which are composed of graphene oxide (GO) with BODIPY conjugated PEG, to trigger the detection of cancer cells through imaging based on intracellular accommodation. Responsiveness to pH is studied using atomic force microscopy and apparent thickness differences are seen with changes in pH. Confocal images of the nanoparticles (NPs) exhibit remarkably bright fluorescence at lysosomal pH, while no fluorescence is observed under a physiological environment, making the NPs a novel fluorescent probe. The NPs are able to accumulate the hydrophobic anticancer drug DOX due to the hydrophobic surface of GO and show excellent drug release behavior. Therefore, the NPs developed are novel candidates for a fluorescent probe to identify cancer cells and a drug carrier for cancer therapy.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Grafite/química , Nanopartículas/química , Polietilenoglicóis/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polietilenoglicóis/síntese química
18.
J Nanosci Nanotechnol ; 13(5): 3464-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23858880

RESUMO

This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.


Assuntos
Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polietileno/química , Impedância Elétrica , Teste de Materiais , Óxidos/química , Tamanho da Partícula , Eletricidade Estática , Propriedades de Superfície
19.
Nanomaterials (Basel) ; 13(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903666

RESUMO

Pristine MXene films express outstanding excellent electromagnetic interference (EMI) shielding properties. Nevertheless, the poor mechanical properties (weak and brittle nature) and easy oxidation of MXene films hinder their practical applications. This study demonstrates a facile strategy for simultaneously improving the mechanical flexibility and the EMI shielding of MXene films. In this study, dicatechol-6 (DC), a mussel-inspired molecule, was successfully synthesized in which DC as mortars was crosslinked with MXene nanosheets (MX) as bricks to create the brick-mortar structure of the MX@DC film. The resulting MX@DC-2 film has a toughness of 40.02 kJ·m-3 and Young's modulus of 6.2 GPa, which are improvements of 513% and 849%, respectively, compared to those of the bare MXene films. The coating of electrically insulating DC significantly reduced the in-plane electrical conductivity from 6491 S·cm-1 for the bare MXene film to 2820 S·cm-1 for the MX@DC-5 film. However, the EMI shielding effectiveness (SE) of the MX@DC-5 film reached 66.2 dB, which is noticeably greater than that of the bare MX film (61.5 dB). The enhancement in EMI SE resulted from the highly ordered alignment of the MXene nanosheets. The synergistic concurrent enhancement in the strength and EMI SE of the DC-coated MXene film can facilitate the utilization of the MXene film in reliable, practical applications.

20.
Nanomicro Lett ; 15(1): 123, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160615

RESUMO

With an excellent power conversion efficiency of 25.7%, closer to the Shockley-Queisser limit, perovskite solar cells (PSCs) have become a strong candidate for a next-generation energy harvester. However, the lack of stability and reliability in PSCs remained challenging for commercialization. Strategies, such as interfacial and structural engineering, have a more critical influence on enhanced performance. MXenes, two-dimensional materials, have emerged as promising materials in solar cell applications due to their metallic electrical conductivity, high carrier mobility, excellent optical transparency, wide tunable work function, and superior mechanical properties. Owing to different choices of transition elements and surface-terminating functional groups, MXenes possess the feature of tuning the work function, which is an essential metric for band energy alignment between the absorber layer and the charge transport layers for charge carrier extraction and collection in PSCs. Furthermore, adopting MXenes to their respective components helps reduce the interfacial recombination resistance and provides smooth charge transfer paths, leading to enhanced conductivity and operational stability of PSCs. This review paper aims to provide an overview of the applications of MXenes as components, classified according to their roles as additives (into the perovskite absorber layer, charge transport layers, and electrodes) and themselves alone or as interfacial layers, and their significant importance in PSCs in terms of device performance and stability. Lastly, we discuss the present research status and future directions toward its use in PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA