RESUMO
A method was developed for studying mass transfer kinetics at lipid bilayers of liposomes. Elution peaks of coumarin were measured by liposome electrokinetic chromatography (LEKC). Four types of phospholipids having different alkyl chains were used for preparing liposomes, which were used as pseudo-stationary phases in LEKC systems. Rate constants of permeation across lipid bilayers of liposomes or of adsorption at lipid membranes were determined by analyzing the first absolute and second central moments of the elution peaks measured by LEKC. The rate constants of permeation or adsorption tend to decrease with an increase in the carbon number of the alkyl chains of phospholipids. It was demonstrated that the moment analysis of elution peak profiles measured by LEKC is effective for determining lipid membrane permeability or adsorption kinetics. Compared with other conventional techniques, the method has some advantages for studying mass transfer kinetics at lipid bilayers. Solute permeation across or solute adsorption at real lipid bilayers of liposomes is analyzed. The principle of the method is the analysis of separation behavior in LEKC, which is different from that of the other ones. It is expected that the method contributes to the kinetic study of mass transfer at lipid bilayers from various perspectives.
RESUMO
It was tried to develop a moment analysis method for the determination of lipid membrane permeability. The first absolute and second central moments of elution peaks measured by liposome electrokinetic chromatography (LEKC) are analyzed by using moment equations. As a concrete example, elution peak profiles of coumarin in a LEKC system, in which liposomes consisting of 1-palmitoyl-2-oleoyl-snglycero-3-phosphocholine (POPC) and phosphatidylserine (PS) are used as a pseudo-stationary phase, were analyzed. It seems that lipid membrane permeability of coumarin across the lipid bilayer of POPC/PS liposomes was measured by the moment analysis method because previous permeability measurements using parallel artificial membrane permeability assay (PAMPA) and Caco-2 cells indicated that coumarin is permeable across lipid bilayer. However, it was also pointed out that the moment analysis method with LEKC is not effective for the determination of lipid membrane permeability and that it provides information about adsorption/desorption kinetics at lipid bilayer of liposomes. Therefore, different moment equations were also developed for the determination of adsorption/desorption rate constants of coumarin from the LEKC data. It was demonstrated that permeation rate constants at lipid bilayer or adsorption/desorption rate constants can be determined from the LEKC data on the basis of moment analysis theory for the mass transfer phenomena of coumarin at the lipid bilayer of POPC/PS liposomes. Mass transfer kinetics of solutes at lipid bilayer should be determined under the conditions that liposomes originally be because they are self-assembling and dynamic systems formed through weak interactions between phospholipid monomers. The moment analysis method using LEKC is effective for the experimental determination of the mass transfer rate constants at the lipid bilayer of liposomes because neither immobilization nor chemical modification of liposomes is necessary when LEKC data are measured. It is expected that the results of this study contribute to the dissemination of an opportunity for the determination of permeation rate constants or adsorption/desorption rate constants at the lipid bilayer of liposomes to many researchers because capillary electrophoresis is widespread.