Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(38): e2122523119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36112647

RESUMO

T cell intracellular antigen-1 (TIA-1) plays a central role in stress granule (SG) formation by self-assembly via the prion-like domain (PLD). In the TIA-1 PLD, amino acid mutations associated with neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) or Welander distal myopathy (WDM), have been identified. However, how these mutations affect PLD self-assembly properties has remained elusive. In this study, we uncovered the implicit pathogenic structures caused by the mutations. NMR analysis indicated that the dynamic structures of the PLD are synergistically determined by the physicochemical properties of amino acids in units of five residues. Molecular dynamics simulations and three-dimensional electron crystallography, together with biochemical assays, revealed that the WDM mutation E384K attenuated the sticky properties, whereas the ALS mutations P362L and A381T enhanced the self-assembly by inducing ß-sheet interactions and highly condensed assembly, respectively. These results suggest that the P362L and A381T mutations increase the likelihood of irreversible amyloid fibrillization after phase-separated droplet formation, and this process may lead to pathogenicity.


Assuntos
Aminoácidos , Esclerose Lateral Amiotrófica , Príons , Agregação Patológica de Proteínas , Antígeno-1 Intracelular de Células T , Aminoácidos/química , Aminoácidos/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Miopatias Distais/genética , Miopatias Distais/metabolismo , Humanos , Mutação , Príons/química , Agregação Patológica de Proteínas/genética , Conformação Proteica em Folha beta/genética , Domínios Proteicos/genética , Antígeno-1 Intracelular de Células T/química , Antígeno-1 Intracelular de Células T/genética
2.
Biotechnol Lett ; 42(5): 697-705, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32006350

RESUMO

OBJECTIVE: To develop a mouse artificial chromosome (MAC) carrying the mouse Xist gene (X-inactive specific transcript; Xist-MAC) as a systematic in vitro approach for investigating Xist RNA-mediated chromosome inactivation. RESULTS: Ectopic expression of the Xist gene in CHO cells led to the accumulation of Xist RNA in cis on the MAC. In addition, the introduction of Xist-MAC to embryonic stem cells from male mice via microcell-mediated chromosome transfer resulted in the accumulation of Xist RNA in cis on the MAC. Chromosomal inactivation was observed in the differentiated state. Moreover, this phenomenon was accompanied by the epigenetic modification of H3K27 trimethylation. CONCLUSIONS: We successfully generated a novel chromosome inactivation model, Xist-MAC, which will provide a valuable tool for the screening and functional analysis of X chromosome inactivation-related genes and proteins.


Assuntos
Cromossomos Artificiais/genética , Células-Tronco Embrionárias/citologia , Histonas/metabolismo , RNA Longo não Codificante/genética , Animais , Células CHO , Células Cultivadas , Cricetulus , Epigênese Genética , Masculino , Camundongos , Inativação do Cromossomo X
3.
PLoS One ; 14(8): e0217605, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404068

RESUMO

Telomerase is a ribonucleoprotein ribonucleic enzyme that is essential for cellular immortalization via elongation of telomere repeat sequences at the end of chromosomes. Human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase holoenzyme, is a key regulator of telomerase activity. Telomerase activity, which has been detected in the majority of cancer cells, is accompanied by hTERT expression, suggesting that this enzyme activity contributes to an unlimited replication potential of cancer cells via regulation of telomere length. Thus, hTERT is an attractive target for cancer-specific treatments. We previously reported that pared-like homeodomain 1 (PITX1) is a negative regulator of hTERT through direct binding to the hTERT promoter. However, the mechanism by which the function of PITX1 contributes to transcriptional silencing of the hTERT gene remains to be clarified. Here, we show that PITX1 and zinc finger CCHC-type containing 10 (ZCCHC10) proteins cooperate to facilitate the transcriptional regulation of the hTERT gene by functional studies via FLAG pull-down assay. Co-expression of PITX1 and ZCCHC10 resulted in inhibition of hTERT transcription, in melanoma cell lines, whereas mutate-deletion of homeodomain in PITX1 that interact with ZCCHC10 did not induce similar phenotypes. In addition, ZCCHC10 expression levels showed marked decrease in the majority of melanoma cell lines and tissues. Taken together, these results suggest that ZCCHC10-PITX1 complex is the functional unit that suppresses hTERT transcription, and may play a crucial role as a novel tumor suppressor complex.


Assuntos
Regulação Enzimológica da Expressão Gênica , Melanoma/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , RNA Mensageiro/metabolismo , Telomerase/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Humanos , Melanoma/genética , Fatores de Transcrição Box Pareados/genética , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , Telomerase/genética , Fatores de Transcrição/genética , Transcrição Gênica , Células Tumorais Cultivadas
4.
Sci Rep ; 6: 20690, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26868975

RESUMO

Long noncoding RNAs (lncRNAs) have been implicated in many biological processes through epigenetic mechanisms. We previously reported that KCNQ1OT1, an imprinted antisense lncRNA in the human KCNQ1 locus on chromosome 11p15.5, is involved in cis-limited silencing within an imprinted KCNQ1 cluster. Furthermore, aberration of KCNQ1OT1 transcription was observed with a high frequency in colorectal cancers. However, the molecular mechanism of the transcriptional regulation and the functional role of KCNQ1OT1 in colorectal cancer remain unclear. Here, we show that the KCNQ1OT1 transcriptional level was significantly increased in human colorectal cancer cells in which ß-catenin was excessively accumulated in the nucleus. Additionally, overexpression of ß-catenin resulted in an increase in KCNQ1OT1 lncRNA-coated territory. On the other hand, knockdown of ß-catenin resulted in significant decrease of KCNQ1OT1 lncRNA-coated territory and an increase in the mRNA expression of the SLC22A18 and PHLDA2 genes that are regulated by KCNQ1OT1. We showed that ß-catenin can promote KCNQ1OT1 transcription through direct binding to the KCNQ1OT1 promoter. Our evidence indicates that ß-catenin signaling may contribute to development of colorectal cancer by functioning as a novel lncRNA regulatory factor via direct targeting of KCNQ1OT1.


Assuntos
Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Neoplasias Colorretais/genética , Regulação para Baixo/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Regiões Promotoras Genéticas , Ligação Proteica/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA