Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(16): 11300-11309, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35880958

RESUMO

Large-scale desalination is used increasingly to address growing freshwater demands and climate uncertainty. Discharge of hypersaline brine from desalination operations has the potential to impact marine ecosystems. Here, we used a 7-year Multiple-Before-After-Control-Impact experiment to test the hypothesis that hypersaline discharge from reverse osmosis desalination alters temperate reef communities. Using replicated, video-based, timed searches at eight sites, we sampled fish and invertebrate assemblages before, during, and after the discharge of hypersaline brine. We found that the composition of fish assemblages was significantly altered out to 55 m while the composition of invertebrate assemblages was altered out to 125 m from the outlet during hypersaline discharge. Fish richness and functional diversity increased around the outlet, while the invertebrate assemblages were no less diverse than those on reference reefs. Differences in faunal assemblages between outlet and reference sites during discharging included changes in the frequency of occurrence of both common and rare reef biota. Overall, we found the influence of hypersaline discharge on temperate reef biota to be spatially localized, with the reefs around the outlet continuing to support rich and diverse faunal communities. In some cases, therefore, the marine environmental consequences of large-scale, well-designed, desalination operations may be appropriately balanced against the positive benefits of improved water security.


Assuntos
Recifes de Corais , Ecossistema , Animais , Biodiversidade , Biota , Peixes , Invertebrados
2.
Environ Microbiol ; 18(12): 4485-4500, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27376620

RESUMO

Aerobic Anoxygenic Phototrophic Bacteria (AAnPB) are ecologically important microorganisms, widespread in oceanic photic zones. However, the key environmental drivers underpinning AAnPB abundance and diversity are still largely undefined. The temporal patterns in AAnPB dynamics at three oceanographic reference stations spanning at approximately 15° latitude along the Australian east coast were examined. AAnPB abundance was highly variable, with pufM gene copies ranging from 1.1 × 102 to 1.4 × 105 ml-1 and positively correlated with day length and solar radiation. pufM gene Miseq sequencing revealed that the majority of sequences were closely related to those obtained previously, suggesting that key AAnPB groups are widely distributed across similar environments globally. Temperature was a major structuring factor for AAnPB assemblages across large spatial scales, correlating positively with richness and Gammaproteobacteria (phylogroup K) abundance but negatively with Roseobacter-clade (phylogroup E) abundance, with temperatures between 16°C and 18°C identified as a potential transition zone between these groups. Network analysis revealed that discrete AAnPB populations exploit specific niches defined by varying temperature, light and nutrient conditions in the Tasman Sea system, with evidence for both niche sharing and partitioning amongst closely related operational taxonomic units.


Assuntos
Bactérias Aeróbias/genética , Bactérias Aeróbias/fisiologia , Gammaproteobacteria/genética , Gammaproteobacteria/fisiologia , Água do Mar/microbiologia , Austrália , Luz , Oceanos e Mares , Estações do Ano , Temperatura
3.
Nat Commun ; 15(1): 424, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253628

RESUMO

During 2022, extreme rainfall occurred across southeast Australia, making it the wettest year on record. The oceanic impact of extreme rainfall events in normally 'dry' regions is not well understood, as their effects are challenging to observe. Here, we use unique multi-platform timeseries and spatial data from 36 autonomous ocean glider missions over 13 years, and we define an extreme salinity threshold inshore of the East Australian Current. We show that the freshwater plume extended fivefold further than previously thought. The compound effect of multiple large rainfall events resulted in a newly observed stratification ('double-stacking') dynamic, with the stratification being largely controlled by salinity. Extreme salinity events are known to be important for species composition of local fisheries as well as detrimental for coastal water quality. Such events and their impacts may become more common as extreme rainfall events are projected to become more frequent in a changing climate. Hence, comprehensive observing strategies facilitating identification of salinity extremes are essential.

4.
Sci Total Environ ; 863: 160717, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36528099

RESUMO

Anchor scour from shipping is increasingly recognised as a global threat to benthic marine biodiversity, yet no replicated ecological assessment exists for any seabed community. Without quantification of impacts to biota, there is substantial uncertainty for maritime stakeholders and managers of the marine estate on how these impacts can be managed or minimised. Our study focuses on a region in SE Australia with a high proportion of mesophotic reef (>30 m), where ships anchor while waiting to enter nearby ports. Temperate mesophotic rocky reefs are unique, providing a platform for a diversity of biota, including sponges, ahermatypic corals and other sessile invertebrates. They are rich in biodiversity, provide essential food resources, habitat refugia and ecosystem services for a range of economically, as well as ecologically important taxa. We examined seven representative taxa from four phyla (porifera, cnidaria, bryozoan, hydrozoa) across anchored and 'anchor-free' sites to determine which biota and which of their morphologies were most at risk. Using stereo-imagery, we assessed the richness of animal forest biota, morphology, size, and relative abundance. Our analysis revealed striking impacts to animal forests exposed to anchoring with between three and four-fold declines in morphotype richness and relative abundance. Marked compositional shifts, relative to those reefs that were anchor-free, were also apparent. Six of the seven taxonomic groups, most notably sponge morphotypes, exhibited strong negative responses to anchoring, while one morphotype, soft bryozoans, showed no difference between treatments. Our findings confirm that anchoring on reefs leads to the substantial removal of biota, with marked reductions of biodiversity and requires urgent management. The exclusion of areas of high biological value from anchorages is an important first step towards ameliorating impacts and promoting the recovery of biodiversity.


Assuntos
Recifes de Corais , Ecossistema , Animais , Navios , Biodiversidade , Invertebrados
5.
Sci Data ; 9(1): 157, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393475

RESUMO

Multi-decadal ocean time-series are fundamental baselines for assessing the impacts of environmental change, however, compiling and quality controlling historic data from multiple sources remains challenging. Here we aggregate, document, and release a number of long time-series temperature products and climatologies compiled from data obtained at 4 monitoring sites around Australia where sub-surface ocean temperature has been recorded nominally weekly to monthly since the 1940s/50s. In recent years, the sampling was augmented with data obtained from moored sensors, vertical profiles and satellite-derived data. The temperature data have been quality controlled, and combined using a rigorously tested methodology. We have packaged the multi-decadal, multi-depth, multi-platform temperature time-series at each site and produced a range of daily temperature climatologies from different data combinations and time periods. The 17 data products are provided as CF-compliant NetCDF files and will be updated periodically. The long-term temperature time-series will be useful for studies of ocean temperature variability, trends, anomalies and change. The data collection is supported by Australia's Integrated Marine Observing System and data are open-access.

6.
PLoS One ; 14(3): e0206778, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30875385

RESUMO

The spatial distribution of a species assemblage is often determined by habitat and climate. In the marine environment, depth can become an important factor as declining light and water temperature leads to changes in the biological habitat structure. To date, much of the focus of ecological fish research has been based on reefs in less than 40 m with little research on the ecological role of mesophotic reefs. We deployed baited remote underwater stereo video systems (stereo-BRUVS) on temperate reefs in two depth categories: shallow (20-40 m) and mesophotic (80-120 m), off Port Stephens, Australia. Sites were selected using data collected by swath acoustic sounder to ensure stereo-BRUVS were deployed on reef. The sounder also provided rugosity, slope and relief data for each stereo-BRUVS deployment. Multivariate analysis indicates that there are significant differences in the fish assemblages between shallow and mesophotic reefs, primarily driven by Ophthalmolepis lineolatus and Notolabrus gymnogenis only occurring on shallow reefs and schooling species of fish that were unique to each depth category: Atypichthys strigatus on shallow reefs and Centroberyx affinis on mesophotic reefs. While shallow reefs had a greater species richness and abundance of fish when compared to mesophotic reefs, mesophotic reefs hosted the same species richness of fishery-targeted species. Chrysophrys auratus and Nemodactylus douglassii are two highly targeted species in this region. While C. auratus was numerically more abundant on shallow reefs, mesophotic reefs provide habitat for larger fish. In comparison, N. douglassii were evenly distributed across all sites sampled. Generalized linear models revealed that depth and habitat type provided the most parsimonious model for predicting the distribution of C. auratus, while habitat type alone best predicted the distribution of N. douglassii. These results demonstrate the importance of mesophotic reefs to fishery-targeted species and therefore have implications for informing the management of these fishery resources on shelf rocky reefs.


Assuntos
Biodiversidade , Recifes de Corais , Ecossistema , Monitoramento Ambiental/métodos , Peixes/fisiologia , Densidade Demográfica , Animais , Ecologia , Pesqueiros
7.
Sci Data ; 6(1): 120, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296871

RESUMO

Here we outline the genesis of Seamap Australia, which integrates spatial data of the seabed of Australia's continental shelf (0-200 m depth) from multiple sources to provide a single national map layer of marine habitat. It is underpinned by a hierarchical classification scheme with registered vocabulary, enabling presentation of nationally consistent information at the highest resolution available for any point in space. The Seamap Australia website enables users to delineate particular areas of interest, overlay habitat maps with many other marine data layers, and to directly access the data and metadata underlying the maps they produce. This unique resource represents a step-change in capacity to access and integrate large and diverse marine data holdings and to readily derive information and products to underpin decision making around marine spatial planning and conservation prioritisation, state-of-environment reporting, and research. It is a world first fully integrated national-scale marine mapping and data service.

8.
Sci Data ; 5: 180018, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461516

RESUMO

Chlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish.


Assuntos
Clorofila , Austrália , Bases de Dados Factuais , Ecossistema , Fitoplâncton , Água do Mar
9.
Sci Data ; 5: 180130, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30015804

RESUMO

Sustained observations of microbial dynamics are rare, especially in southern hemisphere waters. The Australian Marine Microbial Biodiversity Initiative (AMMBI) provides methodologically standardized, continental scale, temporal phylogenetic amplicon sequencing data describing Bacteria, Archaea and microbial Eukarya assemblages. Sequence data is linked to extensive physical, biological and chemical oceanographic contextual information. Samples are collected monthly to seasonally from multiple depths at seven sites: Darwin Harbour (Northern Territory), Yongala (Queensland), North Stradbroke Island (Queensland), Port Hacking (New South Wales), Maria Island (Tasmania), Kangaroo Island (South Australia), Rottnest Island (Western Australia). These sites span ~30° of latitude and ~38° longitude, range from tropical to cold temperate zones, and are influenced by both local and globally significant oceanographic and climatic features. All sequence datasets are provided in both raw and processed fashion. Currently 952 samples are publically available for bacteria and archaea which include 88,951,761 bacterial (72,435 unique) and 70,463,079 archaeal (24,205 unique) 16 S rRNA v1-3 gene sequences, and 388 samples are available for eukaryotes which include 39,801,050 (78,463 unique) 18 S rRNA v4 gene sequences.


Assuntos
Archaea/genética , Bactérias/genética , Microbiota , Austrália , Biodiversidade , Oceanos e Mares , Análise de Sequência de RNA , Microbiologia da Água
10.
Sci Data ; 3: 160043, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27328409

RESUMO

There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels.


Assuntos
Bases de Dados Factuais , Fitoplâncton , Austrália , Biomassa , Mudança Climática , Ecossistema , Eutrofização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA