Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Respir Res ; 23(1): 131, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610699

RESUMO

BACKGROUND: Asthma patients with comorbid obesity exhibit increased disease severity, in part, due to airway remodeling, which is also observed in mouse models of asthma and obesity. A mediator of remodeling that is increased in obesity is leptin. We hypothesized that in a mouse model of allergic airways disease, mice receiving exogenous leptin would display increased airway inflammation and fibrosis. METHODS: Five-week-old male and female C57BL/6J mice were challenged with intranasal house dust mite (HDM) allergen or saline 5 days per week for 6 weeks (n = 6-9 per sex, per group). Following each HDM exposure, mice received subcutaneous recombinant human leptin or saline. At 48 h after the final HDM challenge, lung mechanics were evaluated and the mice were sacrificed. Bronchoalveolar lavage was performed and differential cell counts were determined. Lung tissue was stained with Masson's trichrome, periodic acid-Schiff, and hematoxylin and eosin stains. Mouse lung fibroblasts were cultured, and whole lung mRNA was isolated. RESULTS: Leptin did not affect mouse body weight, but HDM+leptin increased baseline blood glucose. In mixed-sex groups, leptin increased mouse lung fibroblast invasiveness and increased lung Col1a1 mRNA expression. Total lung resistance and tissue damping were increased with HDM+leptin treatment, but not leptin or HDM alone. Female mice exhibited enhanced airway responsiveness to methacholine with HDM+leptin treatment, while leptin alone decreased total respiratory system resistance in male mice. CONCLUSIONS: In HDM-induced allergic airways disease, administration of exogenous leptin to mice enhanced lung resistance and increased markers of fibrosis, with differing effects between males and females.


Assuntos
Asma , Hipersensibilidade , Doença Pulmonar Obstrutiva Crônica , Fibrose Pulmonar , Alérgenos , Animais , Asma/metabolismo , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Hipersensibilidade/metabolismo , Leptina , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fibrose Pulmonar/metabolismo , Pyroglyphidae , RNA Mensageiro/metabolismo
2.
J Allergy Clin Immunol ; 141(3): 918-926.e3, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28624607

RESUMO

BACKGROUND: Eosinophils are prominent in some patients with asthma and are increased in the submucosa in a subgroup of obese patients with asthma (OAs). Surfactant protein A (SP-A) modulates host responses to infectious and environmental insults. OBJECTIVE: We sought to determine whether SP-A levels are altered in OAs compared with a control group and to determine the implications of these alterations in SP-A levels in asthmatic patients. METHODS: Bronchoalveolar lavage fluid from 23 lean, 12 overweight, and 20 obese subjects were examined for SP-A. Mouse tracheal epithelial cells grown at an air-liquid interface were used for mechanistic studies. SP-A-/- mice were challenged in allergen models, and exogenous SP-A therapy was given after the last challenge. Eosinophils were visualized and quantitated in lung parenchyma by means of immunostaining. RESULTS: Significantly less SP-A (P = .002) was detected in samples from OAs compared with those from control subjects. A univariable regression model found SP-A levels were significantly negatively correlated with body mass index (r = -0.33, P = .014), whereas multivariable modeling demonstrated that the correlation depended both on asthma status (P = .017) and the interaction of asthma and body mass index (P = .008). Addition of exogenous TNF-α to mouse tracheal epithelial cells was sufficient to attenuate SP-A and eotaxin secretion. Allergen-challenged SP-A-/- mice that received SP-A therapy had significantly less tissue eosinophilia compared with mice receiving vehicle. CONCLUSIONS: SP-A functions as an important mediator in resolving tissue and lavage fluid eosinophilia in allergic mouse models. Decreased levels of SP-A in OAs, which could be due to increased local TNF-α levels, might lead to impaired eosinophil resolution and could contribute to the eosinophilic asthma phenotype.


Assuntos
Asma/imunologia , Pulmão/imunologia , Obesidade/imunologia , Proteína A Associada a Surfactante Pulmonar/imunologia , Adolescente , Adulto , Idoso , Animais , Asma/genética , Asma/patologia , Líquido da Lavagem Broncoalveolar , Feminino , Humanos , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/patologia
4.
Am J Respir Cell Mol Biol ; 57(6): 702-710, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28787175

RESUMO

Hyaluronan (HA), a major component of the extracellular matrix, is secreted by airway structural cells. Airway fibroblasts in allergic asthma secrete elevated levels of HA in association with increased HA synthase 2 (HAS2) expression. Thus, we hypothesized that HA accumulation in the airway wall may contribute to airway remodeling and hyperresponsiveness in allergic airways disease. To examine this hypothesis, transgenic mice in which the α-smooth muscle actin (α-SMA) promoter drives HAS2 expression were generated. Mixed male and female α-SMA-HAS2 mice (HAS2+ mice, n = 16; HAS2- mice, n = 13) were sensitized via intraperitoneal injection and then chronically challenged with aerosolized ovalbumin (OVA) for 6 weeks. To test airway responsiveness, increasing doses of methacholine were delivered intravenously and airway resistance was measured using the forced oscillation technique. HA, cytokines, and cell types were analyzed in bronchoalveolar lavage fluid, serum, and whole lung homogenates. Lung sections were stained using antibodies specific for HA-binding protein (HABP) and α-SMA, as well as Masson's trichrome stain. Staining of lung tissue demonstrated significantly increased peribronchial HA, α-SMA, and collagen deposition in OVA-challenged α-SMA-HAS2+ mice compared with α-SMA-HAS2- mice. Unexpectedly, OVA-challenged α-SMA-HAS2+ mice displayed significantly reduced airway responsiveness to methacholine compared with similarly treated α-SMA-HAS2- mice. The total numbers of inflammatory cell types in the bronchoalveolar lavage fluid did not differ significantly between OVA-challenged α-SMA-HAS2+ mice and α-SMA-HAS2- mice. We conclude that allergen-challenged mice that overexpress HAS2 in myofibroblasts and smooth muscle cells develop increased airway fibrosis, which lessens airway hyperresponsiveness to bronchoconstrictors.


Assuntos
Asma/enzimologia , Regulação Enzimológica da Expressão Gênica , Hialuronan Sintases/biossíntese , Pulmão/enzimologia , Miócitos de Músculo Liso/enzimologia , Miofibroblastos/enzimologia , Actinas/biossíntese , Actinas/genética , Alérgenos/toxicidade , Animais , Asma/induzido quimicamente , Asma/genética , Broncoconstrição/efeitos dos fármacos , Broncoconstrição/genética , Doença Crônica , Humanos , Hialuronan Sintases/genética , Pulmão/patologia , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/patologia , Miofibroblastos/patologia
5.
Am J Respir Cell Mol Biol ; 56(3): 291-299, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27788019

RESUMO

Limited in vivo models exist to investigate the lung airway epithelial role in repair, regeneration, and pathology of chronic lung diseases. Herein, we introduce a novel animal model in asthma-a xenograft system integrating a differentiating human asthmatic airway epithelium with an actively remodeling rodent mesenchyme in an immunocompromised murine host. Human asthmatic and nonasthmatic airway epithelial cells were seeded into decellularized rat tracheas. Tracheas were ligated to a sterile cassette and implanted subcutaneously in the flanks of nude mice. Grafts were harvested at 2, 4, or 6 weeks for tissue histology, fibrillar collagen, and transforming growth factor-ß activation analysis. We compared immunostaining in these xenografts to human lungs. Grafted epithelial cells generated a differentiated epithelium containing basal, ciliated, and mucus-expressing cells. By 4 weeks postengraftment, asthmatic epithelia showed decreased numbers of ciliated cells and decreased E-cadherin expression compared with nonasthmatic grafts, similar to human lungs. Grafts seeded with asthmatic epithelial cells had three times more fibrillar collagen and induction of transforming growth factor-ß isoforms at 6 weeks postengraftment compared with nonasthmatic grafts. Asthmatic epithelium alone is sufficient to drive aberrant mesenchymal remodeling with fibrillar collagen deposition in asthmatic xenografts. Moreover, this xenograft system represents an advance over current asthma models in that it permits direct assessment of the epithelial-mesenchymal trophic unit.


Assuntos
Asma/patologia , Xenoenxertos/patologia , Pulmão/patologia , Fibrose Pulmonar/patologia , Adulto , Remodelação das Vias Aéreas , Animais , Asma/fisiopatologia , Demografia , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/metabolismo , Matriz Extracelular/metabolismo , Feminino , Xenoenxertos/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Ratos Endogâmicos F344 , Transdução de Sinais , Doadores de Tecidos , Fator de Crescimento Transformador beta1/metabolismo , Adulto Jovem
6.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L328-L338, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28473325

RESUMO

Primary cilia (PC) are solitary cellular organelles that play critical roles in development, homeostasis, and disease pathogenesis by modulating key signaling pathways such as Sonic Hedgehog and calcium flux. The antenna-like shape of PC enables them also to facilitate sensing of extracellular and mechanical stimuli into the cell, and a critical role for PC has been described for mesenchymal cells such as chondrocytes. However, nothing is known about the role of PC in airway smooth muscle cells (ASMCs) in the context of airway remodeling. We hypothesized that PC on ASMCs mediate cell contraction and are thus integral in the remodeling process. We found that PC are expressed on ASMCs in asthmatic lungs. Using pharmacological and genetic methods, we demonstrated that PC are necessary for ASMC contraction in a collagen gel three-dimensional model both in the absence of external stimulus and in response to the extracellular component hyaluronan. Mechanistically, we demonstrate that the effect of PC on ASMC contraction is, to a small extent, due to their effect on Sonic Hedgehog signaling and, to a larger extent, due to their effect on calcium influx and membrane depolarization. In conclusion, PC are necessary for the development of airway remodeling by mediating calcium flux and Sonic Hedgehog signaling.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Brônquios/patologia , Cílios/patologia , Asma/metabolismo , Asma/patologia , Brônquios/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Cultivadas , Cílios/metabolismo , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Potenciais da Membrana/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Transdução de Sinais/fisiologia
7.
Am J Respir Cell Mol Biol ; 54(1): 41-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26074138

RESUMO

Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert's resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13-induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13-induced suppression of ELN expression in airway fibroblasts.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/enzimologia , Elastina/metabolismo , Fibroblastos/metabolismo , Interleucina-13/farmacologia , Pulmão/efeitos dos fármacos , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Adulto , Asma/genética , Asma/patologia , Asma/fisiopatologia , Testes de Provocação Brônquica , Estudos de Casos e Controles , Colorado , Regulação para Baixo , Tecido Elástico/enzimologia , Tecido Elástico/patologia , Elastina/genética , Feminino , Fibroblastos/enzimologia , Fibroblastos/patologia , Volume Expiratório Forçado , Humanos , Pulmão/enzimologia , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Inibidores de Metaloproteinases de Matriz/farmacologia , North Carolina , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Capacidade Vital
11.
Eur Respir J ; 43(2): 464-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23682108

RESUMO

Airway remodelling is a feature of asthma that contributes to loss of lung function. One of the central components of airway remodelling is subepithelial fibrosis. Interleukin (IL)-13 is a key T-helper 2 cytokine and is believed to be the central mediator of allergic asthma including remodelling, but the mechanism driving the latter has not been elucidated in human asthma. We hypothesised that IL-13 stimulates collagen type-1 production by the airway fibroblast in a matrix metalloproteinase (MMP)- and transforming growth factor (TGF)-ß1-dependent manner in human asthma as compared to healthy controls. Fibroblasts were cultured from endobronchial biopsies in 14 subjects with mild asthma and 13 normal controls that underwent bronchoscopy. Airway fibroblasts were treated with various mediators including IL-13 and specific MMP-inhibitors. IL-13 significantly stimulated collagen type-1 production in asthma compared to normal controls. Inhibitors of MMP-2 significantly attenuated collagen production in asthma but had no effect in normal controls. IL-13 significantly increased total and active forms of TGF-ß1, and this activation was blocked using an MMP-2 inhibitor. IL-13 activated endogenous MMP-2 in asthma patients as compared to normal controls. In an ex vivo model, IL-13 potentiates airway remodelling through a mechanism involving TGF-ß1 and MMP-2. These effects provide insights into the mechanism involved in IL-13-directed airway remodelling in asthma.


Assuntos
Asma/metabolismo , Colágeno Tipo I/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Interleucina-13/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Actinas/metabolismo , Adulto , Biópsia , Brônquios/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Testes de Função Respiratória
12.
J Immunol ; 188(7): 3371-81, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22371396

RESUMO

Asthma is a chronic inflammatory disease in which airway epithelial cells are the first line of defense against exposure of the airway to infectious agents. Src homology protein (SHP)-1, a protein tyrosine phosphatase, is a negative regulator of signaling pathways that are critical to the development of asthma and host defense. We hypothesize that SHP-1 function is defective in asthma, contributing to the increased inflammatory response induced by Mycoplasma pneumoniae, a pathogen known to exacerbate asthma. M. pneumoniae significantly activated SHP-1 in airway epithelial cells collected from nonasthmatic subjects by bronchoscopy with airway brushing but not in cells from asthmatic subjects. In asthmatic airway epithelial cells, M. pneumoniae induced significant PI3K/Akt phosphorylation, NF-κB activation, and IL-8 production compared with nonasthmatic cells, which were reversed by SHP-1 overexpression. Conversely, SHP-1 knockdown significantly increased IL-8 production and PI3K/Akt and NF-κB activation in the setting of M. pneumoniae infection in nonasthmatic cells, but it did not exacerbate these three parameters already activated in asthmatic cells. Thus, SHP-1 plays a critical role in abrogating M. pneumoniae-induced IL-8 production in nonasthmatic airway epithelial cells through inhibition of PI3K/Akt and NF-κB activity, but it is defective in asthma, resulting in an enhanced inflammatory response to infection.


Assuntos
Asma/enzimologia , Células Epiteliais/imunologia , Mycoplasma pneumoniae/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/fisiologia , Adulto , Asma/imunologia , Asma/fisiopatologia , Líquido da Lavagem Broncoalveolar/citologia , Núcleo Celular/enzimologia , Células Cultivadas/enzimologia , Células Cultivadas/imunologia , Células Epiteliais/enzimologia , Feminino , Humanos , Técnicas In Vitro , Inflamação , Interleucina-8/biossíntese , Interleucina-8/genética , Masculino , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteína Tirosina Fosfatase não Receptora Tipo 6/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Transcrição Gênica , Adulto Jovem
13.
Surg Obes Relat Dis ; 20(1): 18-28, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37659898

RESUMO

BACKGROUND: Patients with metabolic syndrome (MetS) are at increased risk of developing cardiovascular disease along with other adverse events after bariatric surgery. OBJECTIVES: The incidence of short-term major adverse cardiovascular events (MACE) in patients with MetS undergoing bariatric surgery is not well characterized. SETTING: Accredited bariatric surgery centers in the United States and Canada. METHODS: A total of 760,076 patients aged ≥18 years with body mass index ≥35 kg/m2 who underwent primary bariatric surgery between 2015 and 2018 were included. Patients with both diabetes and hypertension were described as the MetS cohort. Patient characteristics, operative technique, and 30-day outcomes were compared. The primary outcome was incidence of MACE, a composite of myocardial infarction, stroke, and all-cause mortality. Unadjusted and multivariable logistic regression analyses were performed and included an interaction between MetS and hyperlipidemia (HLD). RESULTS: Of the 577,882 patients included, 111,128 (19.2%) exhibited MetS. Patients with MetS more frequently experienced MACE compared with patients without MetS (.3% versus .1%; P < .001). The odds of MACE were greater for patients with MetS versus Non-MetS (odds ratio [OR] 2.87; 95% CI, 2.49-3.32) in the unadjusted analysis. MetS without HLD, MetS with HLD, and Non-MetS with HLD are significantly associated with MACE when compared with those with non-MetS without HLD. CONCLUSIONS: Patients with MetS have an increased frequency of cardiac events following bariatric surgery. Future studies should determine if optimization of 1 or more components of MetS or other related co-morbidities reduces the cardiovascular risk for patients.


Assuntos
Cirurgia Bariátrica , Doenças Cardiovasculares , Hiperlipidemias , Síndrome Metabólica , Infarto do Miocárdio , Humanos , Estados Unidos , Adolescente , Adulto , Síndrome Metabólica/complicações , Síndrome Metabólica/epidemiologia , Fatores de Risco , Cirurgia Bariátrica/métodos , Comorbidade , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/complicações , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/complicações , Hiperlipidemias/complicações , Estudos Retrospectivos
14.
Front Immunol ; 15: 1371764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983858

RESUMO

Introduction: Environmental exposures and experimental manipulations can alter the ontogenetic composition of tissue-resident macrophages. However, the impact of these alterations on subsequent immune responses, particularly in allergic airway diseases, remains poorly understood. This study aims to elucidate the significance of modified macrophage ontogeny resulting from environmental exposures on allergic airway responses to house dust mite (HDM) allergen. Methods: We utilized embryonic lineage labeling to delineate the ontogenetic profile of tissue-resident macrophages at baseline and following the resolution of repeated lipopolysaccharide (LPS)-induced lung injury. We investigated differences in house dust mite (HDM)-induced allergy to assess the influence of macrophage ontogeny on allergic airway responses. Additionally, we employed single-cell RNA sequencing (scRNAseq) and immunofluorescent staining to characterize the pulmonary macrophage composition, associated pathways, and tissue localization. Results: Our findings demonstrate that the ontogeny of homeostatic alveolar and interstitial macrophages is altered after the resolution from repeated LPS-induced lung injury, leading to the replacement of embryonic-derived by bone marrow-derived macrophages. This shift in macrophage ontogeny is associated with reduced HDM-induced allergic airway responses. Through scRNAseq and immunofluorescent staining, we identified a distinct subset of resident-derived interstitial macrophages expressing genes associated with allergic airway diseases, localized adjacent to terminal bronchi, and diminished by prior LPS exposure. Discussion: These results suggest a pivotal role for pulmonary macrophage ontogeny in modulating allergic airway responses. Moreover, our findings highlight the implications of prior environmental exposures in shaping future immune responses and influencing the development of allergies. By elucidating the mechanisms underlying these phenomena, this study provides valuable insights into potential therapeutic targets for allergic airway diseases and avenues for further research into immune modulation and allergic disease prevention.


Assuntos
Macrófagos Alveolares , Transcriptoma , Animais , Camundongos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Pyroglyphidae/imunologia , Hipersensibilidade Respiratória/imunologia , Pulmão/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Alérgenos/imunologia , Lipopolissacarídeos , Feminino , Hipersensibilidade/imunologia
16.
Am J Respir Crit Care Med ; 186(5): 404-11, 2012 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-22773729

RESUMO

RATIONALE: Obesity is associated with increased prevalence and severity of asthma. Adipose tissue macrophages can contribute to the systemic proinflammatory state associated with obesity. However, it remains unknown whether alveolar macrophages have a unique phenotype in overweight/obese patients with asthma. OBJECTIVES: We hypothesized that leptin levels would be increased in the bronchoalveolar lavage fluid from overweight/obese subjects and, furthermore, that leptin would alter the response of alveolar macrophages to bacterial LPS. METHODS: Forty-two subjects with asthma and 46 healthy control subjects underwent research bronchoscopy. Bronchoalveolar lavage fluid from 66 was analyzed for the level of cellular inflammation, cytokines, and soluble leptin. Cultured primary macrophages from 22 subjects were exposed to LPS, leptin, or leptin plus LPS. Cytokines were measured in the supernatants. MEASUREMENTS AND MAIN RESULTS: Leptin levels were increased in overweight/obese subjects, regardless of asthma status (P = 0.013), but were significantly higher in overweight/obese subjects with asthma. Observed levels of tumor necrosis factor-α were highest in overweight/obese subjects with asthma. Ex vivo studies of primary alveolar macrophages indicated that the response to LPS was most robust in alveolar macrophages from overweight/obese subjects with asthma and that preexposure to high-dose leptin enhanced the proinflammatory response. Leptin alone was sufficient to induce production of proinflammatory cytokines from macrophages derived from overweight/obese subjects with asthma. CONCLUSIONS: Ex vivo studies indicate that alveolar macrophages derived from overweight/obese subjects with asthma are uniquely sensitive to leptin. This macrophage phenotype, in the context of higher levels of soluble leptin, may contribute to the pathogenesis of airway disease associated with obesity.


Assuntos
Asma/etiologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Leptina/metabolismo , Macrófagos Alveolares/metabolismo , Obesidade/complicações , Adolescente , Adulto , Idoso , Análise de Variância , Asma/imunologia , Asma/metabolismo , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Broncoscopia , Estudos de Casos e Controles , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Modelos Lineares , Lipopolissacarídeos/imunologia , Masculino , Pessoa de Meia-Idade , Obesidade/imunologia , Obesidade/metabolismo , Sobrepeso/complicações , Sobrepeso/imunologia , Sobrepeso/metabolismo , Fenótipo , Adulto Jovem
17.
J Allergy Clin Immunol ; 130(4): 829-42; quiz 843-4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22951057

RESUMO

Decades of research in animal models have provided abundant evidence to show that IL-13 is a key T(H)2 cytokine that directs many of the important features of airway inflammation and remodeling in patients with allergic asthma. Several promising focused therapies for asthma that target the IL-13/IL-4/signal transducer and activator of transcription 6 pathway are in development, including anti-IL-13 mAbs and IL-4 receptor antagonists. The efficacy of these new potential asthma therapies depends on the responsiveness of patients. However, an understanding of how IL-13-directed therapies might benefit asthmatic patients is confounded by the complex heterogeneity of the disease. Recent efforts to classify subphenotypes of asthma have focused on sputum cellular inflammation profiles, as well as cluster analyses of clinical variables and molecular and genetic signatures. Researchers and clinicians can now evaluate biomarkers of T(H)2-driven airway inflammation in asthmatic patients, such as serum IgE levels, sputum eosinophil counts, fraction of exhaled nitric oxide levels, and serum periostin levels, to aid decision making in clinical trials and drug development and to identify subsets of patients who might benefit from therapies. Although it is unlikely that these therapies will benefit all asthmatic patients with this heterogeneous disease, advances in understanding asthma subphenotypes in relation to clinical variables and T(H)2 cytokine responses offer the opportunity to improve the efficacy and safety of proposed therapies for asthma.


Assuntos
Asma/etiologia , Interleucina-13/fisiologia , Asma/tratamento farmacológico , Asma/imunologia , Biomarcadores , Volume Expiratório Forçado , Humanos , Interleucina-13/antagonistas & inibidores , Subunidade alfa2 de Receptor de Interleucina-13/fisiologia , Interleucina-4/fisiologia , Fenótipo , Células Th2/imunologia
18.
J Asthma Allergy ; 16: 481-499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181453

RESUMO

20 million adults and 4.2 million children in the United States have asthma, a disease resulting in inflammation and airway obstruction in response to various factors, including allergens and pollutants and nonallergic triggers. Obesity, another highly prevalent disease in the US, is a major risk factor for asthma and a significant cause of oxidative stress throughout the body. People with asthma and comorbid obesity are susceptible to developing severe asthma that cannot be sufficiently controlled with current treatments. More research is needed to understand how asthma pathobiology is affected when the patient has comorbid obesity. Because the airway epithelium directly interacts with the outside environment and interacts closely with the immune system, understanding how the airway epithelium of patients with asthma and comorbid obesity is altered compared to that of lean asthma patients will be crucial for developing more effective treatments. In this review, we discuss how oxidative stress plays a role in two chronic inflammatory diseases, obesity and asthma, and propose a mechanism for how these conditions may compromise the airway epithelium.

19.
Front Pharmacol ; 14: 1315540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259298

RESUMO

Over 20 million adults and 6 million children in the United States (US) have asthma, a chronic respiratory disease characterized by airway inflammation, bronchoconstriction, and mucus hypersecretion. Obesity, another highly prevalent disease in the US, is a major risk factor for asthma and a significant cause of diminished asthma control, increased submucosal eosinophilia, and reduced quality of life. A large subgroup of these patients experiences severe symptoms and recurrent exacerbations despite maximal dosage of standard asthma therapies. In the past two decades, the development of biological therapies has revolutionized the field and advanced our understanding of type 2 inflammatory biomarkers. However, patients with obesity and comorbid asthma are not principally considered in clinical trials of biologics. Large landmark cluster analyses of patients with asthma have consistently identified specific asthma phenotypes that associate with obesity but may be differentiated by age of asthma onset and inflammatory cell profiles in sputum. These patterns suggest that biologic processes driving asthma pathology are heterogenous among patients with obesity. The biological mechanisms driving pathology in patients with asthma and comorbid obesity are not well understood and likely multifactorial. Future research needs to be done to elicit the cellular and metabolic functions in the relationship of obesity and asthma to yield the best treatment options for this multiplex condition. In this review, we explore the key features of type 2 inflammation in asthma and discuss the effectiveness, safety profile, and research gaps regarding the currently approved biological therapies in asthma patients with obesity.

20.
Front Clin Diabetes Healthc ; 4: 1198782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492439

RESUMO

Fibrosis leads to irreversible stiffening of tissue and loss of function, and is a common pathway leading to morbidity and mortality in chronic disease. Diabetes mellitus (both type 1 and type 2 diabetes) are associated with significant fibrosis in internal organs, chiefly the kidney and heart, but also lung, liver and adipose tissue. Diabetes is also associated with the diabetic cheirarthropathies, a collection of clinical manifestations affecting the hand that include limited joint mobility (LJM), flexor tenosynovitis, Duypuytren disease and carpal tunnel syndrome. Histo-morphologically these are profibrotic conditions affecting various soft tissue components in the hand. We hypothesize that these hand manifestations reflect a systemic profibrotic state, and are potential clinical biomarkers of current or future internal organ fibrosis. Epidemiologically, there is evidence that fibrosis in one organ associates with fibrosis with another; the putative exposures that lead to fibrosis in diabetes (advanced glycation end product deposition, microvascular disease and hypoxia, persistent innate inflammation) are 'systemic'; a common genetic susceptibility to fibrosis has also been hinted at. These data suggest that a subset of the diabetic population is susceptible to multi-organ fibrosis. The hand is an attractive biomarker to clinically detect this susceptibility, owing to its accessibility to physical examination and exposure to repeated mechanical stresses. Testing the hypothesis has a few pre-requisites: being able to measure hand fibrosis in the hand, using clinical scores or imaging based scores, which will facilitate looking for associations with internal organ fibrosis using validated methodologies for each. Longitudinal studies would be essential in delineating fibrosis trajectories in those with hand manifestations. Since therapies reversing fibrosis are few, the onus lies on identification of a susceptible subset for preventative measures. If systematically validated, clinical hand examination could provide a low-cost, universally accessible and easily reproducible screening step in selecting patients for clinical trials for fibrosis in diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA