Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Mol Cell Cardiol ; 116: 106-114, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29409987

RESUMO

Metabolic syndrome is a cluster of obesity-related metabolic abnormalities that lead to metabolic heart disease (MHD) with left ventricular pump dysfunction. Although MHD is thought to be associated with myocardial energetic deficiency, two key questions have not been answered. First, it is not known whether there is a sufficient energy deficit to contribute to pump dysfunction. Second, the basis for the energy deficit is not clear. To address these questions, mice were fed a high fat, high sucrose (HFHS) 'Western' diet to recapitulate the MHD phenotype. In isolated beating hearts, we used 31P NMR spectroscopy with magnetization transfer to determine a) the concentrations of high energy phosphates ([ATP], [ADP], [PCr]), b) the free energy of ATP hydrolysis (∆G~ATP), c) the rate of ATP production and d) flux through the creatine kinase (CK) reaction. At the lowest workload, the diastolic pressure-volume relationship was shifted upward in HFHS hearts, indicative of diastolic dysfunction, whereas systolic function was preserved. At this workload, the rate of ATP synthesis was decreased in HFHS hearts, and was associated with decreases in both [PCr] and ∆G~ATP. Higher work demands unmasked the inability of HFHS hearts to increase systolic function and led to a further decrease in ∆G~ATP to a level that is not sufficient to maintain normal function of sarcoplasmic Ca2+-ATPase (SERCA). While [ATP] was preserved at all work demands in HFHS hearts, the progressive increase in [ADP] led to a decrease in ∆G~ATP with increased work demands. Surprisingly, CK flux, CK activity and total creatine were normal in HFHS hearts. These findings differ from dilated cardiomyopathy, in which the energetic deficiency is associated with decreases in CK flux, CK activity and total creatine. Thus, in HFHS-fed mice with MHD there is a distinct metabolic phenotype of the heart characterized by a decrease in ATP production that leads to a functionally-important energetic deficiency and an elevation of [ADP], with preservation of CK flux.


Assuntos
Trifosfato de Adenosina/metabolismo , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Contração Miocárdica , Animais , Peso Corporal , Creatina Quinase/metabolismo , Diástole , Dieta Hiperlipídica , Sacarose Alimentar , Metabolismo Energético , Hidrólise , Espectroscopia de Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Perfusão
2.
Nat Med ; 12(2): 181-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16429145

RESUMO

The myofilament protein troponin I (TnI) has a key isoform-dependent role in the development of contractile failure during acidosis and ischemia. Here we show that cardiac performance in vitro and in vivo is enhanced when a single histidine residue present in the fetal cardiac TnI isoform is substituted into the adult cardiac TnI isoform at codon 164. The most marked effects are observed under the acute challenges of acidosis, hypoxia, ischemia and ischemia-reperfusion, in chronic heart failure in transgenic mice and in myocytes from failing human hearts. In the isolated heart, histidine-modified TnI improves systolic and diastolic function and mitigates reperfusion-associated ventricular arrhythmias. Cardiac performance is markedly enhanced in transgenic hearts during reperfusion despite a high-energy phosphate content similar to that in nontransgenic hearts, providing evidence for greater energetic economy. This pH-sensitive 'histidine button' engineered in TnI produces a titratable molecular switch that 'senses' changes in the intracellular milieu of the cardiac myocyte and responds by preferentially augmenting acute and long-term function under pathophysiological conditions. Myofilament-based inotropy may represent a therapeutic avenue to improve myocardial performance in the ischemic and failing heart.


Assuntos
Insuficiência Cardíaca/metabolismo , Isquemia Miocárdica/metabolismo , Troponina I/química , Troponina I/metabolismo , Substituição de Aminoácidos , Animais , Cálcio/metabolismo , Metabolismo Energético , Técnicas de Transferência de Genes , Terapia Genética , Insuficiência Cardíaca/terapia , Histidina/química , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Isquemia Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/terapia , Miócitos Cardíacos/metabolismo , Engenharia de Proteínas , Ratos , Troponina I/genética
3.
J Physiol ; 590(21): 5371-88, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22907055

RESUMO

The thin filament protein troponin T (TnT) is a regulator of sarcomere function. Whole heart energetics and contractile reserve are compromised in transgenic mice bearing missense mutations at R92 within the tropomyosin-binding domain of cTnT, despite being distal to the ATP hydrolysis domain of myosin. These mutations are associated with familial hypertrophic cardiomyopathy (FHC). Here we test the hypothesis that genetically replacing murine αα-MyHC with murine ßß-MyHC in hearts bearing the R92Q cTnT mutation, a particularly lethal FHC-associated mutation, leads to sufficiently large perturbations in sarcomere function to rescue whole heart energetics and decrease the cost of contraction. By comparing R92Q cTnT and R92L cTnT mutant hearts, we also test whether any rescue is mutation-specific. We defined the energetic state of the isolated perfused heart using (31)P-NMR spectroscopy while simultaneously measuring contractile performance at four work states. We found that the cost of increasing contraction in intact mouse hearts with R92Q cTnT depends on the type of myosin present in the thick filament. We also found that the salutary effect of this manoeuvre is mutation-specific, demonstrating the major regulatory role of cTnT on sarcomere function at the whole heart level.


Assuntos
Coração/fisiologia , Contração Miocárdica/fisiologia , Miosinas/fisiologia , Troponina T/fisiologia , Animais , Cardiomiopatia Hipertrófica Familiar , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto
4.
J Biol Chem ; 286(12): 10163-8, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21278384

RESUMO

The sarcoplasmic reticulum calcium ATPase (SERCA) plays a central role in regulating intracellular Ca(2+) homeostasis and myocardial contractility. Several studies show that improving Ca(2+) handling in hypertrophied rodent hearts by increasing SERCA activity results in enhanced contractile function. This suggests that SERCA is a potential target for gene therapy in cardiac hypertrophy and failure. However, it raises the issue of increased energy cost resulting from a higher ATPase activity. In this study, we determined whether SERCA overexpression alters the energy cost of increasing myocardial contraction in mouse hearts with pressure-overload hypertrophy using (31)P NMR spectroscopy. We isolated and perfused mouse hearts from wild-type (WT) and transgenic (TG) mice overexpressing the cardiac isoform of SERCA (SERCA2a) 8 weeks after ascending aortic constriction (left ventricular hypertrophy (LVH)) or sham operation. We found that overexpressing SERCA2a enhances myocardial contraction and relaxation in normal mouse hearts during inotropic stimulation with isoproterenol. Energy consumption was proportionate to the increase in contractile function. Thus, increasing SERCA2a expression in the normal heart allows an enhanced inotropic response with no compromise in energy supply and demand. However, this advantage was not sustained in LVH hearts in which the energetic status was compromised. Although the overexpression of SERCA2a prevented the down-regulation of SERCA protein in LVH hearts, TG-LVH hearts showed no increase in inotropic response when compared with WT-LVH hearts. Our results suggest that energy supply may be a limiting factor for the benefit of SERCA overexpression in hypertrophied hearts. Thus, strategies combining energetic support with increasing SERCA activity may improve the therapeutic effectiveness for heart failure.


Assuntos
Metabolismo Energético , Hipertrofia Ventricular Esquerda/enzimologia , Contração Miocárdica , Miocárdio/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Retículo Sarcoplasmático/enzimologia , Animais , Cálcio/metabolismo , Expressão Gênica , Homeostase , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Ressonância Magnética Nuclear Biomolecular , Ratos , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
5.
Am Heart J ; 163(3): 315-22, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22424000

RESUMO

BACKGROUND: Experimental studies suggest that metabolic myocardial support by intravenous (IV) glucose, insulin, and potassium (GIK) reduces ischemia-induced arrhythmias, cardiac arrest, mortality, progression from unstable angina pectoris to acute myocardial infarction (AMI), and myocardial infarction size. However, trials of hospital administration of IV GIK to patients with ST-elevation myocardial infarction (STEMI) have generally not shown favorable effects possibly because of the GIK intervention taking place many hours after ischemic symptom onset. A trial of GIK used in the very first hours of ischemia has been needed, consistent with the timing of benefit seen in experimental studies. OBJECTIVE: The IMMEDIATE Trial tested whether, if given very early, GIK could have the impact seen in experimental studies. Accordingly, distinct from prior trials, IMMEDIATE tested the impact of GIK (1) in patients with acute coronary syndromes (ACS), rather than only AMI or STEMI, and (2) administered in prehospital emergency medical service settings, rather than later, in hospitals, after emergency department evaluation. DESIGN: The IMMEDIATE Trial was an emergency medical service-based randomized placebo-controlled clinical effectiveness trial conducted in 13 cities across the United States that enrolled 911 participants. Eligible were patients 30 years or older for whom a paramedic performed a 12-lead electrocardiogram to evaluate chest pain or other symptoms suggestive of ACS for whom electrocardiograph-based acute cardiac ischemia time-insensitive predictive instrument indicated a ≥75% probability of ACS, and/or the thrombolytic predictive instrument indicated the presence of a STEMI, or if local criteria for STEMI notification of receiving hospitals were met. Prehospital IV GIK or placebo was started immediately. Prespecified were the primary end point of progression of ACS to infarction and, as major secondary end points, the composite of cardiac arrest or in-hospital mortality, 30-day mortality, and the composite of cardiac arrest, 30-day mortality, or hospitalization for heart failure. Analyses were planned on an intent-to-treat basis, on a modified intent-to-treat group who were confirmed in emergency departments to have ACS, and for participants presenting with STEMI. CONCLUSION: The IMMEDIATE Trial tested whether GIK, when administered as early as possible in the course of ACS by paramedics using acute cardiac ischemia time-insensitive predictive instrument and thrombolytic predictive instrument decision support, would reduce progression to AMI, mortality, cardiac arrest, and heart failure. It also tested whether it would provide clinical and pathophysiologic information on GIK's biological mechanisms.


Assuntos
Síndrome Coronariana Aguda/tratamento farmacológico , Serviços Médicos de Emergência/métodos , Miocárdio/metabolismo , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/mortalidade , Adulto , Soluções Cardioplégicas , Relação Dose-Resposta a Droga , Método Duplo-Cego , Eletrocardiografia , Seguimentos , Glucose/administração & dosagem , Humanos , Infusões Intravenosas , Insulina/administração & dosagem , Potássio/administração & dosagem , Taxa de Sobrevida/tendências , Fatores de Tempo , Tomografia Computadorizada de Emissão de Fóton Único , Resultado do Tratamento , Estados Unidos/epidemiologia
6.
J Physiol ; 589(Pt 21): 5193-211, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21878522

RESUMO

Plasticity of the cellular bioenergetic system is fundamental to every organ function, stress adaptation and disease tolerance. Here, remodelling of phosphotransfer and substrate utilization networks in response to chronic creatine kinase (CK) deficiency, a hallmark of cardiovascular disease, has been revealed in transgenic mouse models lacking either cytosolic M-CK (M-CK(-/-)) or both M-CK and sarcomeric mitochondrial CK (M-CK/ScCKmit(-/-)) isoforms. The dynamic metabolomic signatures of these adaptations have also been defined. Tracking perturbations in metabolic dynamics with (18)O and (13)C isotopes and (31)P NMR and mass spectrometry demonstrate that hearts lacking M-CK have lower phosphocreatine (PCr) turnover but increased glucose-6-phosphate (G-6-P) turnover, glucose utilization and inorganic phosphate compartmentation with normal ATP γ-phosphoryl dynamics. Hearts lacking both M-CK and sarcomeric mitochondrial CK have diminished PCr turnover, total phosphotransfer capacity and intracellular energetic communication but increased dynamics of ß-phosphoryls of ADP/ATP, G-6-P and γ-/ß-phosphoryls of GTP, indicating redistribution of flux through adenylate kinase (AK), glycolytic and guanine nucleotide phosphotransfer circuits. Higher glycolytic and mitochondrial capacities and increased glucose tolerance contributed to metabolic resilience of M-CK/ScCKmit(-/-) mice. Multivariate analysis revealed unique metabolomic signatures for M-CK(-/-) and M-CK/ScCKmit(-/-) hearts suggesting that rearrangements in phosphotransfer and substrate utilization networks provide compensation for genetic CK deficiency. This new information highlights the significance of integrated CK-, AK-, guanine nucleotide- and glycolytic enzyme-catalysed phosphotransfer networks in supporting the adaptivity and robustness of the cellular energetic system.


Assuntos
Creatina Quinase Forma MB/deficiência , Creatina Quinase Mitocondrial/deficiência , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Adenilato Quinase/metabolismo , Animais , Creatina Quinase Forma MB/genética , Creatina Quinase Forma MB/metabolismo , Creatina Quinase Mitocondrial/genética , Creatina Quinase Mitocondrial/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Glicólise , Nucleotídeos de Guanina/metabolismo , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo
7.
J Pharmacol Exp Ther ; 337(2): 513-23, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325441

RESUMO

Inhibition by cardiac glycosides of Na(+), K(+)-ATPase reduces sodium efflux from myocytes and may lead to Na(+) and Ca(2+) overload and detrimental effects on mechanical function, energy metabolism, and electrical activity. We hypothesized that inhibition of sodium persistent inward current (late I(Na)) would reduce ouabain's effect to cause cellular Na(+) loading and its detrimental metabolic (decrease of ATP) and functional (arrhythmias, contracture) effects. Therefore, we determined effects of ouabain on concentrations of intracellular sodium (Na(+)(i)) and high-energy phosphates using (23)Na and (31)P NMR, the amplitude of late I(Na) using the whole-cell patch-clamp technique, and contractility and electrical activity of guinea pig isolated hearts, papillary muscles, and ventricular myocytes in the absence and presence of inhibitors of late I(Na). Ouabain (1-1.3 µM) increased Na(+)(i) and late I(Na) of guinea pig isolated hearts and myocytes by 3.7- and 4.2-fold, respectively. The late I(Na) inhibitors ranolazine and tetrodotoxin significantly reduced ouabain-stimulated increases in Na(+)(i) and late I(Na). Reductions of ATP and phosphocreatine contents and increased diastolic tension in ouabain-treated hearts were also markedly attenuated by ranolazine. Furthermore, the ouabain-induced increase of late I(Na) was also attenuated by the Ca(2+)-calmodulin-dependent kinase I inhibitors KN-93 [N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide] and autocamide-2 related inhibitory peptide, but not by KN-92 [2-[N-(4'-methoxybenzenesulfonyl)]amino-N-(4'-chlorophenyl)-2-propenyl-N-methylbenzylamine phosphate]. We conclude that ouabain-induced Na(+) and Ca(2+) overload is ameliorated by the inhibition of late I(Na).


Assuntos
Inibidores Enzimáticos/farmacologia , Coração/fisiologia , Ouabaína/farmacologia , Canais de Sódio/fisiologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Acetanilidas/administração & dosagem , Acetanilidas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fenômenos Eletrofisiológicos , Metabolismo Energético/efeitos dos fármacos , Feminino , Cobaias , Testes de Função Cardíaca , Espectroscopia de Ressonância Magnética , Masculino , Contração Miocárdica/efeitos dos fármacos , Miocárdio/química , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Músculos Papilares/efeitos dos fármacos , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Ranolazina , Sódio/análise , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/administração & dosagem , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/administração & dosagem , Tetrodotoxina/farmacologia
8.
Nat Med ; 9(9): 1195-201, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12910262

RESUMO

Transplantation of adult bone marrow-derived mesenchymal stem cells has been proposed as a strategy for cardiac repair following myocardial damage. However, poor cell viability associated with transplantation has limited the reparative capacity of these cells in vivo. In this study, we genetically engineered rat mesenchymal stem cells using ex vivo retroviral transduction to overexpress the prosurvival gene Akt1 (encoding the Akt protein). Transplantation of 5 x 10(6) cells overexpressing Akt into the ischemic rat myocardium inhibited the process of cardiac remodeling by reducing intramyocardial inflammation, collagen deposition and cardiac myocyte hypertrophy, regenerated 80-90% of lost myocardial volume, and completely normalized systolic and diastolic cardiac function. These observed effects were dose (cell number) dependent. Mesenchymal stem cells transduced with Akt1 restored fourfold greater myocardial volume than equal numbers of cells transduced with the reporter gene lacZ. Thus, mesenchymal stem cells genetically enhanced with Akt1 can repair infarcted myocardium, prevent remodeling and nearly normalize cardiac performance.


Assuntos
Mesoderma/citologia , Isquemia Miocárdica/patologia , Isquemia Miocárdica/terapia , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Transplante de Células-Tronco/métodos , Animais , Apoptose/fisiologia , Biomarcadores/análise , Células Cultivadas , Colágeno/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Técnicas In Vitro , Injeções , Masculino , Mesoderma/fisiologia , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt , Ratos , Retroviridae/genética , Transdução Genética , beta-Galactosidase/genética
9.
J Mol Cell Cardiol ; 48(4): 591-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19913550

RESUMO

Myocardial [ATP] falls in the failing heart. One potential compensatory mechanism for maintaining a near normal free energy of ATP hydrolysis (DeltaG approximately (ATP)), despite a fall in [ATP], may be the reduction of myocardial creatine (Cr). To test this, we conducted a longitudinal study using transgenic mice overexpressing cardiac Gsalpha, which slowly developed cardiomyopathy. Myocardial energetics measured using (31)P NMR spectroscopy and isovolumic contractile performance were determined in perfused hearts isolated from 5-, 10-, 17-month-old Gsalpha and age-matched littermate wild type (WT) mice. In young Gsalpha hearts, contractile performance was enhanced with near normal cardiac energetics. With age, as contractile performance progressively decreased in Gsalpha hearts, [ATP] and [PCr] progressively decreased while [Pi] increased only modestly; no changes were observed in WT hearts. Myocardial (but not skeletal) [Cr] in Gsalpha mice decreased, beginning at an early age (1.5 months). Consequently, cytosolic [ADP] and the free energy available from ATP hydrolysis were maintained at normal levels in Gsalpha hearts, despite decreased [ATP]. During increased cardiac work caused by supplying isoproterenol, the relationship between the rate pressure product (RPP) and DeltaG approximately (ATP) in Gsalpha mouse hearts demonstrated an increased cost of contraction in failing hearts. Thus, our results suggest that the decrease of myocardial [Cr] and net Pi efflux play compensatory roles by maintaining a nearly normal free energy of ATP hydrolysis in the dysfunctional heart; however, it also increased the cost of contraction, which may contribute to the lower contractile reserve in the failing heart.


Assuntos
Trifosfato de Adenosina/química , Cardiomiopatias/metabolismo , Creatina/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Cardiomegalia/metabolismo , Citosol/metabolismo , Hidrólise , Modelos Lineares , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Isoformas de Proteínas , Receptores Adrenérgicos beta/metabolismo
10.
J Mol Cell Cardiol ; 48(5): 979-88, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20004663

RESUMO

Familial hypertrophic cardiomyopathy, FHC, is a clinically heterogeneous, autosomal-dominant disease of the cardiac sarcomere leading to extensive remodeling at both the whole heart and molecular levels. The remodeling patterns are mutation-specific, a finding that extends to the level of single amino acid substitutions at the same peptide residue. Here we utilize two well-characterized transgenic FHC mouse models carrying independent amino acid substitutions in the TM-binding region of cardiac troponin T (cTnT) at residue 92. R92Q and R92L cTnT domains have mutation-specific average peptide conformation and dynamics sufficient to alter thin filament flexibility and cross-bridge formation and R92 mutant myocytes demonstrate mutation-specific temporal molecular remodeling of Ca(2+) kinetics and impaired cardiac contractility and relaxation. To determine if a greater economy of contraction at the crossbridge level would rescue the mechanical defects caused by the R92 cTnT mutations, we replaced the endogenous murine alpha-myosin heavy chain (MyHC) with the beta-MyHC isoform. While beta-MyHC replacement rescued the systolic dysfunction in R92Q mice, it failed to rescue the defects in diastolic function common to FHC-associated R92 mutations. Surprisingly, a significant component of the whole heart and molecular contractile improvement in the R92Q mice was due to improvements in Ca(2+) homeostasis including SR uptake, [Ca2+](i) amplitude and phospholamban phosphorylation. Our data demonstrate that while genetically altering the myosin composition of the heart bearing a thin filament FHC mutation is sufficient to improve contractility, diastolic performance is refractory despite improved Ca(2+) kinetics. These data reveal a previously unrecognized role for MyHC isoforms with respect to Ca(2+) homeostasis in the setting of cardiomyopathic remodeling and demonstrate the overall dominance of the thin filament mutation in determining the degree of diastolic impairment at the myofilament level.


Assuntos
Cardiomiopatia Hipertrófica Familiar/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Isoformas de Proteínas/metabolismo , Troponina T/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Ventrículos do Coração/citologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miofibrilas/metabolismo , Cadeias Pesadas de Miosina/genética , Fosforilação , Sarcômeros/metabolismo , Troponina T/genética
11.
Cell Metab ; 1(4): 259-71, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16054070

RESUMO

Skeletal and cardiac muscle depend on high turnover of ATP made by mitochondria in order to contract efficiently. The transcriptional coactivator PGC-1alpha has been shown to function as a major regulator of mitochondrial biogenesis and respiration in both skeletal and cardiac muscle, but this has been based only on gain-of-function studies. Using genetic knockout mice, we show here that, while PGC-1alpha KO mice appear to retain normal mitochondrial volume in both muscle beds, expression of genes of oxidative phosphorylation is markedly blunted. Hearts from these mice have reduced mitochondrial enzymatic activities and decreased levels of ATP. Importantly, isolated hearts lacking PGC-1alpha have a diminished ability to increase work output in response to chemical or electrical stimulation. As mice lacking PGC-1alpha age, cardiac dysfunction becomes evident in vivo. These data indicate that PGC-1alpha is vital for the heart to meet increased demands for ATP and work in response to physiological stimuli.


Assuntos
Miocárdio/metabolismo , Transativadores/metabolismo , Animais , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transativadores/deficiência , Transativadores/genética , Fatores de Transcrição
12.
J Clin Invest ; 117(5): 1432-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17431505

RESUMO

AMP-activated protein kinase (AMPK) responds to impaired cellular energy status by stimulating substrate metabolism for ATP generation. Mutation of the gamma2 regulatory subunit of AMPK in humans renders the kinase insensitive to energy status and causes glycogen storage cardiomyopathy via unknown mechanisms. Using transgenic mice expressing one of the mutant gamma2 subunits (N488I) in the heart, we found that aberrant high activity of AMPK in the absence of energy deficit caused extensive remodeling of the substrate metabolism pathways to accommodate increases in both glucose uptake and fatty acid oxidation in the hearts of gamma2 mutant mice via distinct, yet synergistic mechanisms resulting in selective fuel storage as glycogen. Increased glucose entry in the gamma2 mutant mouse hearts was directed through the remodeled metabolic network toward glycogen synthesis and, at a substantially higher glycogen level, recycled through the glycogen pool to enter glycolysis. Thus, the metabolic consequences of chronic activation of AMPK in the absence of energy deficiency is distinct from those previously reported during stress conditions. These findings are of particular importance in considering AMPK as a target for the treatment of metabolic diseases.


Assuntos
Metabolismo Energético/genética , Doença de Depósito de Glicogênio/metabolismo , Glicogênio/metabolismo , Complexos Multienzimáticos/metabolismo , Miocárdio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Substituição de Aminoácidos/genética , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/genética , Doença de Depósito de Glicogênio/enzimologia , Doença de Depósito de Glicogênio/genética , Humanos , Camundongos , Complexos Multienzimáticos/biossíntese , Complexos Multienzimáticos/genética , Estresse Oxidativo/genética , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Ciclização de Substratos/genética , Regulação para Cima/genética
13.
Stem Cells ; 27(4): 971-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19353525

RESUMO

Administration of mesenchymal stem cells (MSCs) is an effective therapy to repair cardiac damage after myocardial infarction (MI) in experimental models. However, the mechanisms of action still need to be elucidated. Our group has recently suggested that MSCs mediate their therapeutic effects primarily via paracrine cytoprotective action. Furthermore, we have shown that MSCs overexpressing Akt1 (Akt-MSCs) exert even greater cytoprotection than unmodified MSCs. So far, little has been reported on the metabolic characteristics of infarcted hearts treated with stem cells. Here, we hypothesize that Akt-MSC administration may influence the metabolic processes involved in cardiac adaptation and repair after MI. MI was performed in rats randomized in four groups: sham group and animals treated with control MSCs, Akt-MSCs, or phosphate-buffered saline (PBS). High energy metabolism and basal 2-deoxy-glucose (2-DG) uptake were evaluated on isolated hearts using phosphorus-31 nuclear magnetic resonance spectroscopy at 72 hours and 2 weeks after MI. Treatment with Akt-MSCs spared phosphocreatine stores and significantly limited the increase in 2-DG uptake in the residual intact myocardium compared with the PBS- or the MSC-treated animals. Furthermore, Akt-MSC-treated hearts had normal pH, whereas low pH was measured in the PBS and MSC groups. Correlative analysis indicated that functional recovery after MI was inversely related to the rate of 2-DG uptake. We conclude that administration of MSCs overexpressing Akt at the time of infarction results in preservation of normal metabolism and pH in the surviving myocardium.


Assuntos
Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células da Medula Óssea/metabolismo , Desoxiglucose/metabolismo , Feminino , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução Genética
16.
FASEB J ; 22(1): 84-92, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17846079

RESUMO

CryAB and HSPB2 are small heat shock proteins constitutively expressed in the heart. CryAB protects cytoskeletal organization and intermediate filament assembly; the functions of HSPB2 are unknown. The promoters of CryAB and HSPB2 share regulatory elements, making identifying their separate functions difficult. Here, using a genetic approach, we report distinct roles for these sHSPs, with CryAB protecting mechanical properties and HSPB2 protecting energy reserve. Isolated hearts of wild type mice (WT), mice lacking both sHSPs (DKO), WT mice overexpressing mouse CryAB protein (mCryAB(Tg)), and mice with no HSPB2 made by crossing DKO with mCryAB(Tg) (DKO/mCryAB(Tg)) were stressed with either ischemia/reperfusion or inotropic stimulation. Contractile performance and energetics were measured using 31P NMR spectroscopy. Ischemia/reperfusion caused severe diastolic dysfunction in DKO hearts. Recovery of [ATP] and [PCr] during reperfusion was impaired only in DKO/mCryAB(Tg). During inotropic stimulation, DKO/mCryAB(Tg) showed blunted systolic and diastolic function and revealed massive energy wasting on acute stress: |deltaG(-ATP)| decreased in DKO by 6.4 +/- 0.7 and in DKO/mCryAB(Tg) by 5.5 +/- 0.8 kJ/mol compared with only approximately 3.3 kJ/mol in WT and mCryAB(Tg). Thus, CryAB and HSPB2 proteins play nonredundant roles in the heart, CryAB in structural remodeling and HSPB2 in maintaining energetic balance.


Assuntos
Engenharia Genética , Proteínas de Choque Térmico/fisiologia , Miocárdio/metabolismo , Cadeia B de alfa-Cristalina/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Dobutamina/administração & dosagem , Metabolismo Energético , Proteínas de Choque Térmico HSP27 , Hidrólise , Camundongos , Contração Miocárdica , Ressonância Magnética Nuclear Biomolecular , Traumatismo por Reperfusão/metabolismo
17.
Clin Exp Pharmacol Physiol ; 36(2): 141-5, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18761665

RESUMO

1. Inhibition of creatine kinase is known to suppress cardiac contractile reserve in intact hearts, although the underlying mechanism has not been elucidated. 2. The present study was designed to examine whether cardiac depression induced by creatine kinase inhibition was due to action at the level of the essential contractile element, namely cardiomyocytes. Adult rat cardiomyocytes were perfused with the creatine kinase inhibitor iodoacetamide (90 micromol/L) for 90 min. Mechanical and intracellular Ca(2+) properties were evaluated using edge-detection and fluorescence microscopy, respectively. Myocytes were superfused with normal (1.3 mmol/L) or high (3.3 mmol/L) extracellular Ca(2+) contractile buffer. Mechanical function was examined, including peak shortening (PS), maximal velocity of shortening/relengthening (+/-dL/dt), time to 90% PS (TPS(90)), time to 90% relengthening (TR(90)) and integration of shortening/relengthening (normalized to PS). Intracellular Ca(2+) transients were evaluated using the following indices: resting and rise of fura-2 fluorescence intensity (Delta FFI) and intracellular Ca(2+) decay time constant. 3. The results indicate that elevated extracellular Ca(2+) stimulated cardiomyocyte positive inotrope, manifested as increased PS, +/-dL/dt, area of shortening, resting FFI and Delta FFI associated with a shortened TR(90) and intracellular Ca(2+) decay time constant. High extracellular Ca(2+) did not affect TPS(90) and area of relengthening. Iodoacetamide ablated high Ca(2+)-induced increases in PS, +/-dL/dt, area of shortening, resting FFI, Delta FFI and shortened TR(90) and intracellular Ca(2+) decay time constant. Iodoacetamide itself significantly enhanced the area of relengthening and TR(90) without affecting other indices. 4. Collectively, these data demonstrate that inhibition of creatine kinase blunts high extracellular Ca(2+)-induced increases in cardiomyocyte contractile response (i.e. cardiac contractile reserve).


Assuntos
Cálcio/farmacologia , Creatina Quinase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Iodoacetamida/farmacologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Cálcio/metabolismo , Tamanho Celular/efeitos dos fármacos , Masculino , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
18.
J Cell Biochem ; 105(1): 99-107, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18452158

RESUMO

TNFalpha is a cytokine wit pleiotropic functions in many organs. In the heart increased TNFalpha levels are not only associated with heart failure, but also, paradoxically, with protection from ischemic damage. To test whether the protective role of TNFalpha in the heart is concentration-dependent, we studied two mouse heart models with low (two- to threefold) over-expression of endogenous TNFalpha: mice deficient in a translational repressor of TNFalpha mRNA, TIA-1(-/-), and mice over-expressing human TNFalpha. Hearts lacking TIA-1 were characterized for their endogenous TNFalpha over-expression during normal Langendorff perfusion. To define which TNFalpha receptor mediates cardiac protection, we also used mice lacking the TNFR1 receptor. Contractile function was assessed in isolated hearts perfused in the isovolumic Langendorff mode during and following global no-flow ischemic stress and in response to varying extracellular [Ca(2+)] to determine their contractile response and Ca(2+) sensitivity. All hearts with low over-expression of TNFalpha, independent of human or murine origin, have improved contractile performance and increased Ca(2+) sensitivity (by 0.2-0.26 pCa). Hearts lacking TNFR1 have contractile performance equal to wild type hearts. Recovery from ischemia was greater in TIA-1(-/-) and was diminished in TNFR1(-/-). Better contractile function in TNFalpha over-expressing hearts is not due to improved cardiac energetics assessed as [ATP] and glucose uptake or to differences in expression of SERCA2a or calmodulin. We suggest that low levels of TNFalpha increase the Ca(2+) sensitivity of the heart via a TNFR1-mediated mechanism.


Assuntos
Regulação da Expressão Gênica , Contração Muscular , Miocárdio/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Cálcio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Poli(A)/deficiência , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/metabolismo , RNA Mensageiro/genética , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Fator de Necrose Tumoral alfa/genética
19.
J Clin Invest ; 112(5): 768-75, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12952925

RESUMO

The thin filament protein cardiac troponin T (cTnT) is an important regulator of myofilament activation. Here we report a significant change in cardiac energetics in transgenic mice bearing the missense mutation R92Q within the tropomyosin-binding domain of cTnT, a mutation associated with a clinically severe form of familial hypertrophic cardiomyopathy. This functional domain of cTnT has recently been shown to be a crucial modulator of contractile function despite the fact that it does not directly interact with the ATP hydrolysis site in the myosin head. Simultaneous measurements of cardiac energetics using 31P NMR spectroscopy and contractile performance of the intact beating heart revealed both a decrease in the free energy of ATP hydrolysis available to support contractile work and a marked inability to increase contractile performance upon acute inotropic challenge in hearts from R92Q mice. These results show that alterations in thin filament protein structure and function can lead to significant defects in myocardial energetics and contractile reserve.


Assuntos
Cardiomiopatia Hipertrófica/genética , Metabolismo Energético , Mutação , Miocárdio/metabolismo , Troponina T/genética , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Contração Miocárdica
20.
FASEB J ; 20(6): 661-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16581974

RESUMO

We previously reported that intramyocardial injection of bone marrow-derived mesenchymal stem cells overexpressing Akt (Akt-MSCs) inhibits ventricular remodeling and restores cardiac function measured 2 wk after myocardial infarction. Here, we report that the functional improvement occurs in < 72 h. This early remarkable effect cannot be readily attributed to myocardial regeneration from the donor cells. Thus, we hypothesized that paracrine actions exerted by the cells through the release of soluble factors might be important mechanisms of tissue repair and functional improvement after injection of the Akt-MSCs. Indeed, in the current study we demonstrate that conditioned medium from hypoxic Akt-MSCs markedly inhibits hypoxia-induced apoptosis and triggers vigorous spontaneous contraction of adult rat cardiomyocytes in vitro. When injected into infarcted hearts, the Akt-MSC conditioned medium significantly limits infarct size and improves ventricular function relative to controls. Support to the paracrine hypothesis is provided by data showing that several genes, coding for factors (VEGF, FGF-2, HGF, IGF-I, and TB4) that are potential mediators of the effects exerted by the Akt-MSC conditioned medium, are significantly up-regulated in the Akt-MSCs, particularly in response to hypoxia. Taken together, our data support Akt-MSC-mediated paracrine mechanisms of myocardial protection and functional improvement.


Assuntos
Citoproteção/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Comunicação Parácrina , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Timosina/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA