Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2318794121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442163

RESUMO

Nuclear factor κB (NF-κB) is activated by various inflammatory and infectious molecules and is involved in immune responses. It has been elucidated that ADP-ß-D-manno-heptose (ADP-Hep), a metabolite in gram-negative bacteria, activates NF-κB through alpha-kinase 1 (ALPK1)-TIFA-TRAF6 signaling. ADP-Hep stimulates the kinase activity of ALPK1 for TIFA phosphorylation. Complex formation between phosphorylation-dependent TIFA oligomer and TRAF6 promotes the polyubiquitination of TRAF6 for NF-κB activation. TIFAB, a TIFA homolog lacking a phosphorylation site and a TRAF6 binding motif, is a negative regulator of TIFA-TRAF6 signaling and is implicated in myeloid diseases. TIFAB is indicated to regulate TIFA-TRAF6 signaling through interactions with TIFA and TRAF6; however, little is known about its biological function. We demonstrated that TIFAB forms a complex not with the TIFA dimer, an intrinsic form of TIFA involved in NF-κB activation, but with monomeric TIFA. The structural analysis of the TIFA/TIFAB complex and the biochemical and cell-based analyses showed that TIFAB forms a stable heterodimer with TIFA, inhibits TIFA dimer formation, and suppresses TIFA-TRAF6 signaling. The resultant TIFA/TIFAB complex is a "pseudo-TIFA dimer" lacking the phosphorylation site and TRAF6 binding motif in TIFAB and cannot form the orderly structure as proposed for the phosphorylated TIFA oligomer involved in NF-κB activation. This study elucidated the molecular and structural basis for the regulation of TIFA-TRAF6 signaling by TIFAB.


Assuntos
NF-kappa B , Fator 6 Associado a Receptor de TNF , Fator 6 Associado a Receptor de TNF/genética , Transdução de Sinais , Imunidade Inata , Fosforilação , Polímeros
2.
BMC Cancer ; 24(1): 495, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637726

RESUMO

BACKGROUND: Although many studies have explored the correlation between quality of life and survival, none have reported this relationship for specific cancers assessed at distinct time points. This meta-analysis aimed to investigate the impact of pretreatment Global Quality of Life (QOL) and functioning QOL, including physical, social, role, emotional, and cognitive QOLs, on mortality risk in patients with lung cancer. METHODS: A literature search was conducted across the Cumulative Index to Nursing and Allied Health Literature (CINAHL), Scopus, and PubMed databases for articles published between their inception and December 2022. Subsequently, 11 studies were selected based on predefined eligibility criteria to investigate the relationship between pretreatment QOLs and mortality risk in patients with lung cancer. RESULTS: Pretreatment global, physical, social, role, and emotional QOLs were significantly associated with mortality risk as follows: Global QOL (hazard ratio [HR] = 1.08 95% confidence interval [CI] = 1.03-1.13); Physical QOL (HR = 1.04 95% CI = 1.02-1.05); Social QOL (HR = 1.02 95% CI = 1.01-1.03; Role QOL (HR = 1.01 95% CI = 1.01-1.02); Emotional QOL (HR = 1.01 95% CI = 1.00-1.03). CONCLUSIONS: These findings underscore the importance of early QOL assessment after diagnosis as well as early provision of physical, social, and psychological support accommodating each patient's demands. TRIAL REGISTRATION: The International Prospective Register of Systematic Reviews registration number CRD42023398206, Registered on February 20, 2023.


Assuntos
Neoplasias Pulmonares , Humanos , Qualidade de Vida , Ansiedade , Depressão , Emoções
3.
Support Care Cancer ; 32(5): 304, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652168

RESUMO

PURPOSE: Chemotherapy-induced peripheral neuropathy (CIPN) commonly involves hand dexterity impairment. However, the factors affecting hand dexterity impairment are unknown and there is currently no established treatment. The purpose of the current study was to clarify factors influencing hand dexterity impairment in taxane-induced peripheral neuropathy using subjective and objective assessments. METHODS: We assessed patient characteristics, treatment-related factors, subjective symptoms of CIPN (Patient Neurotoxicity Questionnaire [PNQ]), psychological symptoms, and upper limb dysfunction (Quick Disabilities of the Arm, Shoulder and Hand [Quick DASH]). Quantitative assessments were pinch strength, sensory threshold, hand dexterity impairment, and grip force control. Multiple regression analysis was performed using hand dexterity impairment as the dependent variable and age and PNQ, Quick DASH, and control of grip force as independent variables. RESULTS: Forty-three breast cancer patients were included in the analysis. Hand dexterity impairment in taxane-induced peripheral neuropathy patients was significantly correlated with age, grip force control, and PNQ sensory scores (p < 0.008). Multiple regression analysis demonstrated that PNQ sensory scores and grip force control were significantly associated with hand dexterity impairment (p < 0.01). CONCLUSION: Subjective symptoms (numbness and pain) and grip force control contributed to impaired hand dexterity in taxane-induced peripheral neuropathy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Força da Mão , Mãos , Doenças do Sistema Nervoso Periférico , Taxoides , Humanos , Feminino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/fisiopatologia , Força da Mão/fisiologia , Taxoides/efeitos adversos , Idoso , Adulto , Mãos/fisiopatologia , Neoplasias da Mama/tratamento farmacológico , Inquéritos e Questionários , Antineoplásicos/efeitos adversos , Análise de Regressão , Avaliação da Deficiência , Hidrocarbonetos Aromáticos com Pontes/efeitos adversos
4.
Qual Life Res ; 33(10): 2631-2643, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38811448

RESUMO

PURPOSE: This systematic review and meta-analysis aimed to examine the impact of global quality of life (QOL) on mortality risk in patients with cancer, considering cancer type and timepoint of QOL assessment. METHODS: A systematic search was conducted using Cumulated Index to Nursing and Allied Health Literature, PubMed/MEDLINE, and Scopus databases from inception to December 2022. Observational studies that assessed QOL and examined mortality risk in patients with cancer were extracted. Subgroup analyses were performed for cancer types and timepoints of QOL assessment. RESULTS: Overall, global QOL was significantly associated with mortality risk (hazard ratio: 1.06, 95% confidence interval: 1.05-1.07; p < 0.00001). A subgroup analysis based on cancer type demonstrated that lung, head and neck, breast, esophagus, colon, prostate, hematologic, liver, gynecologic, stomach, brain, bladder, bone and soft tissue, and mixed type cancers were significantly associated with mortality risk; however, melanoma and pancreatic cancer were not significantly associated with mortality risk. Additionally, global QOL was associated with mortality risk at all timepoints (pretreatment, posttreatment, and palliative phase); pretreatment QOL had the largest impact, followed by posttreatment QOL. CONCLUSION: These findings provide evidence that QOL is associated with mortality risk in patients with cancer at any timepoint. These results indicate the importance of evaluating the QOL and supportive interventions to improve QOL in any phase.


Assuntos
Neoplasias , Qualidade de Vida , Humanos , Qualidade de Vida/psicologia , Neoplasias/psicologia , Neoplasias/mortalidade
5.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34663724

RESUMO

Although it is held that proinflammatory changes precede the onset of breast cancer, the underlying mechanisms remain obscure. Here, we demonstrate that FRS2ß, an adaptor protein expressed in a small subset of epithelial cells, triggers the proinflammatory changes that induce stroma in premalignant mammary tissues and is responsible for the disease onset. FRS2ß deficiency in mouse mammary tumor virus (MMTV)-ErbB2 mice markedly attenuated tumorigenesis. Importantly, tumor cells derived from MMTV-ErbB2 mice failed to generate tumors when grafted in the FRS2ß-deficient premalignant tissues. We found that colocalization of FRS2ß and the NEMO subunit of the IκB kinase complex in early endosomes led to activation of nuclear factor-κB (NF-κB), a master regulator of inflammation. Moreover, inhibition of the activities of the NF-κB-induced cytokines, CXC chemokine ligand 12 and insulin-like growth factor 1, abrogated tumorigenesis. Human breast cancer tissues that express higher levels of FRS2ß contain more stroma. The elucidation of the FRS2ß-NF-κB axis uncovers a molecular link between the proinflammatory changes and the disease onset.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Neoplasias Mamárias Experimentais/etiologia , Neoplasias Mamárias Experimentais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Neoplasias da Mama/imunologia , Carcinogênese , Citocinas/metabolismo , Feminino , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Neoplasias Mamárias Experimentais/imunologia , Vírus do Tumor Mamário do Camundongo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Gravidez , Receptor ErbB-2/metabolismo , Infecções por Retroviridae , Microambiente Tumoral/imunologia , Infecções Tumorais por Vírus
6.
Esophagus ; 21(3): 270-282, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772959

RESUMO

This systematic review and meta-analysis investigated the impact of quality of life (QoL) on mortality risk in patients with esophageal cancer. A literature search was conducted using the CINAHL, PubMed/MEDLINE, and Scopus databases for articles published from inception to December 2022. Observational studies that examined the association between QoL and mortality risk in patients with esophageal cancer were included. Subgroup analyses were performed for time points of QoL assessment and for types of treatment. Seven studies were included in the final analysis. Overall, global QoL was significantly associated with mortality risk (hazard ratio 1.02, 95% confidence interval 1.01-1.04; p < 0.00004). Among the QoL subscales of QoL, physical, emotional, role, cognitive, and social QoL were significantly associated with mortality risk. A subgroup analysis by timepoints of QoL assessment demonstrated that pre- and posttreatment global and physical, pretreatment role, and posttreatment cognitive QoL were significantly associated with mortality risk. Moreover, another subgroup analysis by types of treatment demonstrated that the role QoL in patients with surgery, and the global, physical, role, and social QoL in those with other treatments were significantly associated with mortality risk. These findings indicate that the assessment of QoL in patients with esophageal cancer before and after treatment not only provides information on patients' condition at the time of treatment but may also serve as an outcome for predicting life expectancy. Therefore, it is important to conduct regular QoL assessments and take a proactive approach to improve QoL based on the results of these assessments.


Assuntos
Neoplasias Esofágicas , Qualidade de Vida , Humanos , Qualidade de Vida/psicologia , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/psicologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso
7.
Cancer Cell Int ; 23(1): 57, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005661

RESUMO

BACKGROUND: In vivo investigations with cancer cells have powerful tools to discover cancer progression mechanisms and preclinical candidate drugs. Among these in vivo experimental models, the establishment of highly malignancy cell lines with xenograft has been frequently used. However, few previous researches targeted malignancy-related genes whose protein levels translationally changed. Therefore, this study aimed to identify malignancy-related genes which contributed to cancer progression and changed at the protein level in the in vivo selected cancer cell lines. METHODS: We established the high malignancy breast cancer cell line (LM05) by orthotopic xenograft as an in vivo selection method. To explore the altered genes by translational or post-translational regulation, we analyzed the protein production by western blotting in the highly malignant breast cancer cell line. Functional analyses of the altered genes were performed by in vitro and in vivo experiments. To reveal the molecular mechanisms of the regulation with protein level, we evaluated post-translational modification by immunoprecipitation. In addition, we evaluated translational production by click reaction-based purification of nascent protein. RESULTS: As a result, NF-κB inducing kinase (NIK) increased at the protein level and promoted the nuclear localization of NF-κB2 (p52) and RelB in the highly malignant breast cancer cell line. The functional analyses indicated the NIK upregulation contributed to tumor malignancy via cancer-associated fibroblasts (CAFs) attraction and partially anti-apoptotic activities. Additionally, the immunoprecipitation experiment revealed that the ubiquitination of NIK decreased in LM05 cells. The decline in NIK ubiquitination was attributed to the translational downregulation of cIAP1. CONCLUSIONS: Our study identified a dysregulated mechanism of NIK production by the suppression of NIK post-modification and cIAP1 translation. The aberrant NIK accumulation promoted tumor growth in the highly malignant breast cancer cell line.

8.
Biochem Biophys Res Commun ; 636(Pt 1): 178-183, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36334442

RESUMO

Inhibition of osteoclast differentiation is a promising approach for the treatment of osteoporosis and rheumatoid arthritis. Receptor activator of nuclear factor kappa B (NF-κB) (RANK), which is an essential molecule for osteoclast differentiation, interacts with tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) to transduce downstream signals. Both RANK and TRAF6 have homo-trimeric structures, forming a multivalent interaction between the Pro-X-Glu-X-X-(aromatic/acidic) motif of RANK and the C-terminal domain of TRAF6 (TRAF-C), that markedly increases the binding affinity. Here, we designed a tetravalent peptide, RANK-tet, containing the TRAF-C-binding motif of RANK and found that RANK-tet binds to TRAF-C with high affinity. In contrast, a monomeric form of RANK-tet (RANK-mono) with the same TRAF-C-binding motif did not bind to TRAF-C, clearly indicating the multivalent interaction is strictly required for the high-affinity binding to TRAF-C. RANK-tet did not bind to a series of TRAF-C-mutants with an amino acid substitution in the RANK-binding region, indicating that RANK-tet specifically targets the RANK-binding region of TRAF-C. A cell-permeable form of RANK-tet that has poly-Arg residues at each C-terminal of the TRAF-C-binding motif efficiently inhibited the RANK ligand (RANKL)-induced differentiation of bone marrow cells to osteoclasts. Thus, this compound can be an effective anti-osteoclastogenic agent.


Assuntos
Ligante RANK , Fator 6 Associado a Receptor de TNF , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Ligante RANK/metabolismo , Osteoclastos/metabolismo , NF-kappa B/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Diferenciação Celular/fisiologia
9.
J Virol ; 95(17): e0080721, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34106748

RESUMO

The membrane fusion between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and host cells is essential for the initial step of infection; therefore, the host cell membrane components, including sphingolipids, influence the viral infection. We assessed several inhibitors of the enzymes pertaining to sphingolipid metabolism, against SARS-CoV-2 spike protein (S)-mediated cell-cell fusion and viral infection. N-(4-Hydroxyphenyl) retinamide (4-HPR), an inhibitor of dihydroceramide Δ4-desaturase 1 (DES1), suppressed cell-cell fusion and viral infection. The analysis of sphingolipid levels revealed that the inhibition efficiencies of cell-cell fusion and viral infection in 4-HPR-treated cells were consistent with an increased ratio of saturated sphinganine-based lipids to total sphingolipids. We investigated the relationship of DES1 with the inhibition efficiencies of cell-cell fusion. The changes in the sphingolipid profile induced by 4-HPR were mitigated by the supplementation with exogenous cell-permeative ceramide; however, the reduced cell-cell fusion could not be reversed. The efficiency of cell-cell fusion in DES1 knockout (KO) cells was at a level comparable to that in wild-type (WT) cells; however, the ratio of saturated sphinganine-based lipids to the total sphingolipids was higher in DES1 KO cells than in WT cells. 4-HPR reduced cell membrane fluidity without any significant effects on the expression or localization of angiotensin-converting enzyme 2, the SARS-CoV-2 receptor. Therefore, 4-HPR suppresses SARS-CoV-2 S-mediated membrane fusion through a DES1-independent mechanism, and this decrease in membrane fluidity induced by 4-HPR could be the major cause for the inhibition of SARS-CoV-2 infection. IMPORTANCE Sphingolipids could play an important role in SARS-CoV-2 S-mediated membrane fusion with host cells. We studied the cell-cell fusion using SARS-CoV-2 S-expressing cells and sphingolipid-manipulated target cells, with an inhibitor of the sphingolipid metabolism. 4-HPR (also known as fenretinide) is an inhibitor of DES1, and it exhibits antitumor activity and suppresses cell-cell fusion and viral infection. 4-HPR suppresses membrane fusion through a decrease in membrane fluidity, which could possibly be the cause for the inhibition of SARS-CoV-2 infection. There is accumulating clinical data on the safety of 4-HPR. Therefore, it could be a potential candidate drug against COVID-19.


Assuntos
Membrana Celular/metabolismo , Fenretinida/farmacologia , Fluidez de Membrana/efeitos dos fármacos , Oxirredutases/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Fusão Celular , Membrana Celular/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Fluidez de Membrana/genética , Oxirredutases/deficiência , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
10.
Chem Pharm Bull (Tokyo) ; 70(7): 477-482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35786566

RESUMO

1,2-Naphthoquinone (2-NQ) is a nucleophile acceptor that non-selectively makes covalent bonds with cysteine residues in various cellular proteins, and is also found in diesel exhaust, an air pollutant. This molecule has rarely been considered as a pharmacophore of bioactive compounds, in contrast to 1,4-naphthoquinone. We herein designed and synthesized a compound named N-(7,8-dioxo-7,8-dihydronaphthalen-1-yl)-2-methoxybenzamide (MBNQ), in which 2-NQ was hybridized with the nuclear factor-κB (NF-κB) inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) as a nucleophile acceptor. Although 50 µM MBNQ did not inhibit NF-κB signaling, 10 µM MBNQ induced cell death in the lung cancer cell line A549, which was insensitive to 2-NQ (10 µM). In contrast, MBNQ was less toxic in normal lung cells than 2-NQ. A mechanistic study showed that MBNQ mainly induced apoptosis, presumably via the activation of p38 mitogen-activated protein kinase (MAPK). Collectively, the present results demonstrate that the introduction of an appropriate substituent into 2-NQ constitutes a new biologically active entity, which will lead to the development of 2-NQ-based drugs.


Assuntos
Neoplasias Pulmonares , Naftoquinonas , Apoptose , Humanos , Neoplasias Pulmonares/tratamento farmacológico , NF-kappa B/metabolismo , Naftoquinonas/farmacologia
11.
Proc Jpn Acad Ser B Phys Biol Sci ; 97(4): 145-160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33840674

RESUMO

NF-κB was first identified in 1986 as a B cell-specific transcription factor inducing immunoglobulin κ light chain expression. Subsequent studies revealed that NF-κB plays important roles in development, organogenesis, immunity, inflammation, and neurological functions by spatiotemporally regulating cell proliferation, differentiation, and apoptosis in several cell types. Furthermore, studies on the signal pathways that activate NF-κB led to the discovery of TRAF family proteins with E3 ubiquitin ligase activity, which function downstream of the receptor. This discovery led to the proposal of an entirely new signaling mechanism concept, wherein K63-ubiquitin chains act as a scaffold for the signaling complex to activate downstream kinases. This concept has revolutionized ubiquitin studies by revealing the importance of the nonproteolytic functions of ubiquitin not only in NF-κB signaling but also in a variety of other biological systems. TRAF6 is the most diverged among the TRAF family proteins, and our studies uncovered its notable physiological and pathological functions.


Assuntos
NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitinação , Animais , Humanos , Transdução de Sinais
12.
J Biol Chem ; 294(14): 5677-5687, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30737278

RESUMO

Membrane fusion is the first essential step in HIV-1 replication. The gp41 subunit of HIV-1 envelope protein (Env), a class I fusion protein, achieves membrane fusion by forming a structure called a six-helix bundle composed of N- and C-terminal heptad repeats. We have recently shown that the distal portion of the α9 helix in the C-terminal heptad repeat of X4-tropic HXB2 Env plays a critical role in the late-stage membrane fusion and viral infection. Here, we used R5-tropic JRFL Env and constructed six alanine insertion mutants, 641+A to 646+A, in the further distal portion of α9 where several glutamine residues are conserved (the number corresponds to the position of the inserted alanine in JRFL Env). 644+A showed the most severe defect in syncytia formation. Decreased fusion pore formation activity, revealed by a dual split protein assay, was observed in all mutants except 641+A. Sequence analysis and substitution of inserted 644A with Gln revealed that the glutamine residue at position 644 that forms complex hydrogen-bond networks with other polar residues on the surface of the six-helix bundle is critical for cell-cell fusion. We also developed a split NanoLuc® (Nluc) reporter-based assay specific to the virus-cell membrane fusion step to analyze several of the mutants. Interestingly syncytia-competent mutants failed to display Nluc activities. In addition to defective fusion activity, a reduction of Env incorporation into virions may further contribute to differences in cell-cell and virus-cell fusions.


Assuntos
Bioensaio , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Fusão de Membrana , Mutagênese Insercional , Internalização do Vírus , Alanina/genética , Alanina/metabolismo , Linhagem Celular , Proteína gp41 do Envelope de HIV/genética , HIV-1/genética , Humanos , Estrutura Secundária de Proteína
13.
Proc Natl Acad Sci U S A ; 114(34): E7140-E7149, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784800

RESUMO

microRNA-146a (miR-146a) has been previously implicated as an essential molecular brake, preventing immune overreaction and malignant transformation by attenuating NF-κB signaling, putatively via repression of the Traf6 and Irak1 genes. The exact contribution of miR-146a-mediated silencing of these genes to the control of immune activation is currently unknown. Therefore, we defined the role of the miR-146a-Traf6 signaling axis in the regulation of immune homeostasis using a genetic epistasis analysis in miR-146a-/- mice. We have uncovered a surprising separation of functions at the level of miR-146a targets. Lowering the Traf6 gene dose and consequent attenuation of NF-κB activation rescued several significant miR-146a-/- phenotypes, such as splenomegaly, aberrant myeloproliferation, and excessive inflammatory responses. In contrast, decreasing Traf6 expression had no effect on the development of the progressive bone marrow failure phenotype, as well as lymphomagenesis in miR-146a-/- mice, indicating that miR-146a controls these biological processes through different molecular mechanisms.


Assuntos
Autoimunidade , Células-Tronco Hematopoéticas/citologia , Inflamação/imunologia , MicroRNAs/imunologia , Mielopoese , Neoplasias/imunologia , Fator 6 Associado a Receptor de TNF/imunologia , Animais , Feminino , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/imunologia , Homeostase , Humanos , Inflamação/genética , Inflamação/fisiopatologia , Masculino , Camundongos , MicroRNAs/genética , Células Mieloides/citologia , Células Mieloides/imunologia , Neoplasias/genética , Neoplasias/fisiopatologia , Fator 6 Associado a Receptor de TNF/genética
14.
J Phys Ther Sci ; 32(1): 59-64, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32082031

RESUMO

[Purpose] Low muscle mass and sleep disturbance are common among geriatric patients with cancer. In patients with gastrointestinal cancer, low muscle mass is considered an indicator of poor prognosis. In the recent years, sleep disturbance has attracted much attention as a factor for low muscle mass among community-dwelling elderly individuals; however, such associations are unclear in patients with cancer. The present study investigated the relationship between preoperative sleep disturbance and low muscle mass in patients with gastrointestinal cancer. [Participants and Methods] This cross-sectional survey enrolled 86 elderly patients (aged more than 60 years) with gastrointestinal cancer who were scheduled for curative surgery. Low preoperative muscle mass was defined according to Asian Working Group for Sarcopenia criteria. Sleep disturbance was assessed using the Japanese version of the Pittsburgh Sleep Quality Index, including the subscales. [Results] Twenty-seven patients (31%) were classified as having low muscle mass. After adjusting for confounding factors, bad sleep quality, determined by the subscales, was significantly associated with low muscle mass. [Conclusion] Our results suggest that the evaluation of sleep quality is imperative for addressing low preoperative muscle mass in patients with gastrointestinal cancer.

15.
PLoS Pathog ; 13(1): e1006162, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28103322

RESUMO

The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation.


Assuntos
Ativação Enzimática/fisiologia , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/metabolismo , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Immunoblotting , Imunoprecipitação , Células Jurkat , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Transfecção
17.
Cell Microbiol ; 20(8): e12846, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29582580

RESUMO

Streptococcus pneumoniae is the most common causative agent of community-acquired pneumonia and can penetrate epithelial barriers to enter the bloodstream and brain. We investigated intracellular fates of S. pneumoniae and found that the pathogen is entrapped by selective autophagy in pneumolysin- and ubiquitin-p62-LC3 cargo-dependent manners. Importantly, following induction of autophagy, Rab41 was relocated from the Golgi apparatus to S. pneumoniae-containing autophagic vesicles (PcAV), which were only formed in the presence of Rab41-positive intact Golgi apparatuses. Moreover, subsequent localization and regulation of K48- and K63-linked polyubiquitin chains in and on PcAV were clearly distinguishable from each other. Finally, we found that E3 ligase Nedd4-1 was recruited to PcAV and played a pivotal role in K63-linked polyubiquitin chain (K63Ub) generation on PcAV, promotion of PcAV formation, and elimination of intracellular S. pneumoniae. These findings suggest that Nedd4-1-mediated K63Ub deposition on PcAV acts as a scaffold for PcAV biogenesis and efficient elimination of host cell-invaded pneumococci.


Assuntos
Autofagia , Células Epiteliais/imunologia , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Poliubiquitina/metabolismo , Streptococcus pneumoniae/imunologia , Estreptolisinas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Células Epiteliais/microbiologia , Humanos , Ubiquitinação
18.
J Theor Biol ; 462: 479-489, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30496749

RESUMO

The transcription factor NF-κB performs various cell functions, such as regulating proliferation and differentiation and blocking apoptosis, by inducing the expression of multiple genes. The shuttling of NF-κB between the cytoplasm and nucleus is involved in its transcriptional activity in the canonical NF-κB pathway. The transcription of the NF-κB target genes is regulated by the phosphorylation of both IκBα and the RelA subunit of NF-κB, suggesting that these phosphorylation events are crucial for the oscillation. In this study, we constructed a new mathematical model of NF-κB activation to explore the modulation of the oscillation by the phosphorylation of IκBα and RelA. Based on a stability analysis around the equilibrium point, we confirmed that IκBα phosphorylation added a structure with a stable periodic solution to the phosphorylation model. The stable periodic solution appeared to transiently respond to the attenuation of the concentration of active IKKß. Because the NF-κB oscillation is caused by the periodic solution, the amplitude and period of the NF-κB oscillation in the phosphorylation model was constant regardless of the initial conditions; we defined this property as the reproducibility of the oscillation. On the other hand, the amplitude and period of the NF-κB oscillation depended on a parameter related to the RelA phosphorylation, suggesting that the oscillation period is regulated by RelA phosphorylation. In addition, the region of the periodic solution that is dependent on active IKKß also depends on a parameter related to RelA phosphorylation. Therefore, we conclude that the phosphorylation of both IκBα and RelA regulates the robustness of the NF-κB signaling module oscillation. That is, by appropriately controlling the phosphorylation process, it becomes possible to control the NF-κB oscillation and appropriately induce the NFkB-dependent expression gene. We anticipate that this study will contribute to the future elucidation of the mechanism underlying the nuclear cytoplasmic (N-C) oscillation of NF-κB.


Assuntos
Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Periodicidade , Fosforilação/fisiologia , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Transporte Biológico/fisiologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Modelos Biológicos
19.
Bioorg Med Chem Lett ; 29(16): 2162-2167, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31272791

RESUMO

Zinc fingers have rarely been regarded as drug targets. On the contrary, the zinc-binding site of enzymes has often been considered a target of inhibitors. We previously developed a dithiol compound called SN-1 that binds to the zinc finger protein tumor necrosis factor receptor-associated factor 6 (TRAF6) and suppresses downstream nuclear factor-κB (NF-κB) signaling. To determine the minimal structure requirements of TRAF6 inhibitors based on SN-1, NF-κB inhibitory activity and cytotoxicity of its derivatives including new compounds were examined. SN-2, an oxidative type of prodrug of SN-1 with 2-nitrophenylthio groups via disulfide, has the minimum structure for an inhibitor of TRAF6, as seen with cellular experiments. The importance of two side chains with a thiol group was shown with molecular modelling. This study may lead to development of selective TRAF6 inhibitors in the near future.


Assuntos
Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Dedos de Zinco/genética , Humanos , Estrutura Molecular
20.
Retrovirology ; 15(1): 27, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29609648

RESUMO

BACKGROUND: The native pre-fusion structure of gp120/gp41 complex of human immunodeficiency virus type 1 was recently revealed. In the model, the helices of gp41 (α6, α7, α8, and α9) form a four-helix collar underneath trimeric gp120. Gp41 is a class I fusion protein and mediates membrane fusion by forming a post-fusion structure called the six-helix bundle (6HB). The comparison of the pre- and post-fusion structures revealed the large conformational changes in gp41 during the antiparallel packing of the N- and C-terminal heptad repeats (NHRs and CHRs) in membrane fusion. Several mutagenesis studies of gp41 performed in the past were interpreted based on 6HB, the only available structure at that time. To obtain an insight about the current pre-fusion structural model and conformational changes during membrane fusion, alanine insertion mutagenesis of the NHR, CHR and connecting loop regions of HXB2 gp41 was performed. The effects of mutations on biosynthesis and membrane fusion were analyzed by immunoblotting and fusion assays, respectively. The extent of membrane fusion was evaluated by split luciferase-based pore formation and syncytia formation assays, respectively. RESULTS: Consistent with the current structural model, drastic negative effects of mutations on biosynthesis and membrane fusion were observed for NHR, loop, and proximal regions of CHR (up to amino acid position 643). The insertions in α9 after it leaves the four-helix collar were tolerable for biosynthesis. These CHR mutants showed varying effects on membrane fusion. Insertion at position 644 or 645 resulted in poor pore and syncytia formation. Efficient pore and syncytia formation almost similar to that of the wild type was observed for insertion at position 647, 648 or 649. However, recovery of virus infectivity was only observed for the insertions beyond position 648. CONCLUSIONS: The mutagenesis data for HXB2 gp41 is in agreement with the recent pre-fusion structure model. The virus infection data suggested that fusion pores sufficiently large enough for the release of the virus genome complex are formed after the completion of 6HB beyond position 648.


Assuntos
Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Domínios e Motivos de Interação entre Proteínas , Sequências Repetitivas de Ácido Nucleico , Alanina/genética , Sequência de Aminoácidos , Proteína gp41 do Envelope de HIV/genética , Humanos , Modelos Biológicos , Modelos Moleculares , Mutagênese Insercional , Biossíntese de Proteínas , Conformação Proteica , Internalização do Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA