Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Neuropsychopharmacol ; 27(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629703

RESUMO

The understanding of the pathophysiology of schizophrenia as well as the mechanisms of action of antipsychotic drugs remains a challenge for psychiatry. The demonstration of the therapeutic efficacy of several new atypical drugs targeting multiple different receptors, apart from the classical dopamine D2 receptor as initially postulated unique antipsychotic target, complicated even more conceptualization efforts. Here we discuss results suggesting a main role of the islands of Calleja, still poorly studied GABAergic granule cell clusters in the ventral striatum, as cellular targets of several innovative atypical antipsychotics (clozapine, cariprazine, and xanomeline/emraclidine) effective in treating also negative symptoms of schizophrenia. We will emphasize the potential role of dopamine D3 and M4 muscarinic acetylcholine receptor expressed at the highest level by the islands of Calleja, as well as their involvement in schizophrenia-associated neurocircuitries. Finally, we will discuss the implications of new data showing ongoing adult neurogenesis of the islands of Calleja as a very promising antipsychotic target linking long-life neurodevelopment and dopaminergic dysfunction in the striatum.


Assuntos
Antipsicóticos , Esquizofrenia , Antipsicóticos/farmacologia , Humanos , Animais , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Ínsulas Olfatórias/efeitos dos fármacos , Ínsulas Olfatórias/metabolismo , Neurogênese/efeitos dos fármacos
2.
J Neural Transm (Vienna) ; 130(9): 1195-1205, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36943505

RESUMO

Mood disorders such as major depressive disorder (MDD) and bipolar disorder (BD) are often resistant to current pharmacological treatment. Therefore, various alternative therapeutic approaches including diets are, therefore, under investigation. Ketogenic diet (KD) is effective for treatment-resistant epilepsy and metabolic diseases, however, only a few clinical studies suggest its beneficial effect also for mental disorders. Animal models are a useful tool to uncover the underlying mechanisms of therapeutic effects. Women have a twice-higher prevalence of mood disorders but very little is known about sex differences in nutritional psychiatry. In this review, we aim to summarize current knowledge of the sex-specific effects of KD in mood disorders. Ketone bodies improve mitochondrial functions and suppress oxidative stress, inducing neuroprotective and anti-inflammatory effects which are both beneficial for mental health. Limited data also suggest KD-induced improvement of monoaminergic circuits and hypothalamus-pituitary-adrenal axis-the key pathophysiological pathways of mood disorders. Gut microbiome is an important mediator of the beneficial and detrimental effects of diet on brain functioning and mental health. Gut microbiota composition is affected in mood disorders but its role in the therapeutic effects of different diets, including KD, remains poorly understood. Still little is known about sex differences in the effects of KD on mental health as well as on metabolism and body weight. Some animal studies used both sexes but did not find differences in behavior, body weight loss or gut microbiota composition. More studies, both on a preclinical and clinical level, are needed to better understand sex-specific effects of KD on mental health.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Dieta Cetogênica , Epilepsia , Animais , Feminino , Masculino , Modelos Animais
3.
Artigo em Inglês | MEDLINE | ID: mdl-37934233

RESUMO

S-ketamine, a N-methyl-D-aspartate receptor (NMDAR) antagonist, and psilocybin, a 5-hydroxy-tryptamine (serotonin) 2A receptor (5-HT2AR) agonist, are reported as effective rapid-acting antidepressants. Both compounds increase glutamate signalling and evoke cortical hyperexcitation. S-ketamine induces neurotoxicity especially in the retrosplenial cortex (Olney's lesions). Whether psilocybin produces similar neurotoxic effects has so far not been investigated. We performed an immunohistochemical whole-brain mapping for heat shock protein 70 (HSP70) in rats treated with psilocybin, S-ketamine, and MK-801. In contrast to S-ketamine- and MK-801-treated animals, we did not detect any HSP70-positive neurons in retrosplenial cortex of rats treated with psilocybin. Our results suggest that psilocybin might be safer for clinical use compared to S-ketamine regarding neuronal damage.

4.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139008

RESUMO

Depression is linked to changes in GABAergic inhibitory neurons, especially parvalbumin (PV) interneurons, which are susceptible to redox dysregulation. Olanzapine (Olz) is an atypical antipsychotic whose mode of action remains unclear. We determined the effect of Olz on PV-positive (+) and glutamate decarboxylase 67 (GAD67) + cell numbers in the layers of dorsal hippocampus (dHIPP) cornu ammonis (CA1-CA3) and dentate gyrus (DG) subregions in rats exposed to chronic social isolation (CSIS), which is an animal model of depression. Antioxidative enzymes and proinflammatory cytokine levels were also examined. CSIS decreased the PV+ cell numbers in the Stratum Oriens (SO) and Stratum Pyramidale (SP) of dCA1 and dDG. It increased interleukin-6 (IL-6), suppressor of cytokine signaling 3 (SOCS3), and copper-zinc superoxide dismutase (CuZnSOD) levels, and it decreased catalase (CAT) protein levels. Olz in CSIS increased the number of GAD67+ cells in the SO and SP layers of dCA1 with no effect on PV+ cells. It reduced the PV+ and GAD67+ cell numbers in the Stratum Radiatum of dCA3 in CSIS. Olz antagonizes the CSIS-induced increase in CuZnSOD, CAT and SOCS3 protein levels with no effect on IL-6. Data suggest that the protective Olz effects in CSIS may be mediated by altering the number of PV+ and GAD67+ cells in dHIPP subregional layers.


Assuntos
Interleucina-6 , Parvalbuminas , Ratos , Animais , Parvalbuminas/metabolismo , Olanzapina/farmacologia , Interleucina-6/metabolismo , Contagem de Células , Hipocampo/metabolismo
5.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446133

RESUMO

The increasing prevalence of depression requires more effective therapy and the understanding of antidepressants' mode of action. We carried out untargeted metabolomics of the prefrontal cortex of rats exposed to chronic social isolation (CSIS), a rat model of depression, and/or fluoxetine treatment using liquid chromatography-high resolution mass spectrometry. The behavioral phenotype was assessed by the forced swim test. To analyze the metabolomics data, we employed univariate and multivariate analysis and biomarker capacity assessment using the receiver operating characteristic (ROC) curve. We also identified the most predictive biomarkers using a support vector machine with linear kernel (SVM-LK). Upregulated myo-inositol following CSIS may represent a potential marker of depressive phenotype. Effective fluoxetine treatment reversed depressive-like behavior and increased sedoheptulose 7-phosphate, hypotaurine, and acetyl-L-carnitine contents, which were identified as marker candidates for fluoxetine efficacy. ROC analysis revealed 4 significant marker candidates for CSIS group discrimination, and 10 for fluoxetine efficacy. SVM-LK with accuracies of 61.50% or 93.30% identified a panel of 7 or 25 predictive metabolites for depressive-like behavior or fluoxetine effectiveness, respectively. Overall, metabolic fingerprints combined with the ROC curve and SVM-LK may represent a new approach to identifying marker candidates or predictive metabolites for ongoing disease or disease risk and treatment outcome.


Assuntos
Depressão , Fluoxetina , Isolamento Social , Animais , Ratos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/metabolismo , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Córtex Pré-Frontal/metabolismo , Resultado do Tratamento , Inositol/genética , Inositol/metabolismo , Regulação para Cima/efeitos dos fármacos , Biomarcadores/metabolismo , Acetilcarnitina/metabolismo , Análise Multivariada , Comportamento Animal/efeitos dos fármacos , Masculino
6.
Int J Neuropsychopharmacol ; 25(11): 946-950, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-35974297

RESUMO

Rapastinel, formerly Glyx-13, is a novel positive allosteric modulator of the N-methyl-D-aspartate-receptor (NMDAR) that counteracts psychotomimetic actions of NMDAR antagonists. We set out to evaluate the effect of rapastinel alone or in combination with the global and GluN2B subunit-specific NMDAR antagonists MK-801 and Ro25-6981, respectively, on neuronal activation in relevant regions using c-fos brain mapping. Whereas rapastinel alone did not trigger significant c-fos expression beyond the prelimbic cortex, it strongly increased the c-fos expression induced by MK-801 in hippocampal, cingulate, and retrosplenial areas. Similar results were obtained when rapastinel was replaced by D-cycloserine. Our results reveal new interactions at network level between NMDAR modulators with possible implications regarding their therapeutic effects.


Assuntos
Maleato de Dizocilpina , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antidepressivos/uso terapêutico , Proteínas Proto-Oncogênicas c-fos/metabolismo
7.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499675

RESUMO

Chronic social isolation (CSIS)-induced alternation in synaptic and mitochondrial function of specific brain regions is associated with major depressive disorder (MDD). Despite the wide number of available medications, treating MDD remains an important challenge. Although fluoxetine (Flx) is the most frequently prescribed antidepressant, its mode of action is still unknown. To delineate affected molecular pathways of depressive-like behavior and identify potential targets upon Flx treatment, we performed a comparative proteomic analysis of hippocampal purified synaptic terminals (synaptosomes) of rats exposed to six weeks of CSIS, an animal model of depression, and/or followed by Flx treatment (lasting three weeks of six-week CSIS) to explore synaptic protein profile changes. Results showed that Flx in controls mainly induced decreased expression of proteins involved in energy metabolism and the redox system. CSIS led to increased expression of proteins that mainly participate in Ca2+/calmodulin-dependent protein kinase II (Camk2)-related neurotransmission, vesicle transport, and ubiquitination. Flx treatment of CSIS rats predominantly increased expression of proteins involved in synaptic vesicle trafficking (exocytosis and endocytosis), and energy metabolism (glycolytic and mitochondrial respiration). Overall, these Flx-regulated changes in synaptic and mitochondrial proteins of CSIS rats might be critical targets for new therapeutic development for the treatment of MDD.


Assuntos
Transtorno Depressivo Maior , Fluoxetina , Ratos , Animais , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Vesículas Sinápticas/metabolismo , Proteômica , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo/metabolismo , Metabolismo Energético
8.
Nervenarzt ; 93(3): 223-233, 2022 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-34766186

RESUMO

Rapid-acting antidepressants disprove the dogma that antidepressants need several weeks to become clinically effective. Ketamine, the prototype of a rapid-acting antidepressant, is an N­methyl-D-aspartate (NMDA) receptor blocking agent. A single i.v. application of ketamine induces rapid changes in glutamatergic neurotransmitter systems, leading to preferential activation of glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. This evokes the activation of brain-derived neurotrophic factor (BDNF), causing plastic changes in the central nervous system within 24 h. In the prefrontal cortex ketamine leads to a regeneration of synaptic contacts, which have been damaged by chronic stress. This regeneration correlates with improvement of depression-like behavioral changes in rodent models. Classical monoaminergic antidepressants can cause similar changes but with considerably longer latency periods. For clinical application a nasal spray of esketamine has been developed, since this enantiomer has the highest affinity for NMDA receptors; however, since R­ketamine and certain ketamine metabolites also have antidepressant effects in preclinical models, these are currently being tested in clinical studies. Moreover, there are many other glutamatergic substances under clinical investigation for antidepressant effects without ketamine-like adverse effects. In addition, there are also several promising rapid-acting antidepressants that do not primarily act via the glutamate system, such as the gamma-aminobutyric acid (GABA) receptor modulator brexanolone or the serotonin receptor agonist psilocybin.


Assuntos
Antidepressivos , Depressão , Antidepressivos/farmacologia , Sistema Nervoso Central , Neurobiologia , Receptores de N-Metil-D-Aspartato
9.
Eur Arch Psychiatry Clin Neurosci ; 271(8): 1587-1591, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32789675

RESUMO

Rapastinel is a novel psychoactive substance that acts as an N-methyl-D-aspartate-receptor (NMDAR) agonist and triggers antidepressant- and antipsychotic-like effects in animal models. However, it is unknown if rapastinel possesses a better side-effect profile than fast-acting glutamatergic antidepressants, like ketamine, which trigger neurotoxicity in the perinatal rodent cortex and protracted schizophrenia-like alterations. Here we found a remarkable neuroprotective effect of rapastinel against apoptosis induced by the NMDAR antagonist MK-801 in comparison to that elicited by clozapine and the mGlu2/3 agonist LY354740. These results suggest the potential therapeutic/prophylactic effect of rapastinel in ameliorating deleterious effects induced by NMDAR blockade during neurodevelopment.


Assuntos
Córtex Cerebral , Fármacos Neuroprotetores , Oligopeptídeos , Receptores de N-Metil-D-Aspartato , Animais , Córtex Cerebral/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , Oligopeptídeos/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Eur Arch Psychiatry Clin Neurosci ; 269(4): 439-447, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29453493

RESUMO

The brain-derived neurotrophic factor (BDNF) is a major proliferative agent in the nervous system. Both BDNF-deficiency and perinatal hypoxia represent genetic/environmental risk factors for schizophrenia. Moreover, a decreased BDNF response to birth hypoxia was associated with the disease. BDNF expression is influenced by neuronal activity and environmental conditions such as hypoxia. Thus, it may partake in neuroprotective and reparative mechanisms in acute or chronic neuronal insults. However, the interaction of hypoxia and BDNF is insufficiently understood and the behavioral outcome unknown. Therefore, we conducted a battery of behavioral tests in a classical model of chronic early postnatal mild hypoxia (10% O2), known to significantly impair brain development, in BDNF-deficient mice. We found selective deficits in measures associated with sensorimotor gating, namely enhanced acoustic startle response (ASR) and reduced prepulse inhibition (PPI) of ASR in BDNF-deficient mice. Unexpectedly, the alterations of sensorimotor gating were caused only by BDNF-deficiency alone, whereas hypoxia failed to evoke severe deficits and even leads to a milder phenotype in BDNF-deficient mice. As deficits in sensorimotor gating are present in schizophrenia and animal models of the disease, our results are of relevance regarding the involvement of BDNF in its pathogenesis. On the other hand, they suggest that the effect of perinatal hypoxia on long-term brain abnormalities is complex, ranging from protective to deleterious actions, and may critically depend on the degree of hypoxia. Therefore, future studies may refine existing hypoxia protocols to better understand neurodevelopmental consequences associated with schizophrenia.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/deficiência , Hipóxia/fisiopatologia , Inibição Pré-Pulso/fisiologia , Esquizofrenia/fisiopatologia , Filtro Sensorial/fisiologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Eur Arch Psychiatry Clin Neurosci ; 268(1): 77-87, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27581816

RESUMO

The evidence underlying the so-called glutamatergic hypothesis ranges from NMDA receptor hypofunction to an imbalance between excitatory and inhibitory circuits in specific brain structures. Among all glutamatergic system components, metabotropic receptors play a main role in regulating neuronal excitability and synaptic plasticity. Here, we investigated, using qRT-PCR and western blot, consequences in the hippocampus and prefrontal/frontal cortex (PFC/FC) of mice with a genetic deletion of the metabotropic glutamate receptor 5 (mGlu5), addressing key components of the GABAergic and glutamatergic systems. We found that mGlu5 knockout (KO) mice showed a significant reduction of reelin, GAD65, GAD67 and parvalbumin mRNA levels, which is specific for the PFC/FC, and that is paralleled by a significant reduction of protein levels in male KO mice. We next analyzed the main NMDA and AMPA receptor subunits, namely GluN1, GluN2A, GluN2B and GluA1, and we found that mGlu5 deletion determined a significant reduction of their mRNA levels, also within the hippocampus, with differences between the two genders. Our data suggest that neurochemical abnormalities impinging the glutamatergic and GABAergic systems may be responsible for the behavioral phenotype associated with mGlu5 KO animals and point to the close interaction of these molecular players for the development of neuropsychiatric disorders such as schizophrenia. These data could contribute to a better understanding of the involvement of mGlu5 alterations in the molecular imbalance between excitation and inhibition underlying the emergence of a schizophrenic-like phenotype and to understand the potential of mGlu5 modulators in reversing the deficits characterizing the schizophrenic pathology.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/genética , Receptor de Glutamato Metabotrópico 5/deficiência , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/genética , Parvalbuminas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Receptor de Glutamato Metabotrópico 5/genética , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Proteína Reelina , Esquizofrenia/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Fatores Sexuais
12.
Cell Mol Neurobiol ; 36(7): 1215-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26645823

RESUMO

The recently identified Cystine-knot containing AMPAR-associated protein (Ckamp44) represents a novel AMPAR-related protein that critically controls AMPAR-mediated currents and short-term plasticity. However, the effects of the lack of this protein at network level are not entirely understood. Here we used c-Fos brain mapping to analyse whether the excitatory/inhibitory balance is altered in the absence of the Ckamp44. We found that Ckamp44(-/-) mice treated with an NMDAR antagonist exhibited a very robust c-Fos expression pattern, similar with that seen in mice lacking the GluN2A subunit of NMDAR treated with the same compound. This finding is unexpected, in particular, since Ckamp44 expression is strongest in dentate gyrus granule cells and less abundant in the rest of the brain.


Assuntos
Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Genes fos/fisiologia , Camundongos , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia
14.
Horm Behav ; 81: 97-105, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27059527

RESUMO

The translational assessment of mechanisms underlying cognitive functions using touchscreen-based approaches for rodents is growing in popularity. In these paradigms, daily training is usually accompanied by extended food restriction to maintain animals' motivation to respond for rewards. Here, we show a transient elevation in stress hormone levels due to food restriction and touchscreen training, with subsequent adaptation effects, in fecal corticosterone metabolite concentrations, indicating effective coping in response to physical and psychological stressors. Corticosterone concentrations of experienced but training-deprived mice revealed a potential anticipation of task exposure, indicating a possible temporary environmental enrichment-like effect caused by cognitive challenge. Furthermore, the analyses of immediate early gene (IEG) immunoreactivity in the hippocampus revealed alterations in Arc, c-Fos and zif268 expression immediately following training. In addition, BDNF expression was altered as a function of satiation state during food restriction. These findings suggest that standard protocols for touchscreen-based training induce changes in hippocampal neuronal activity related to satiation and learning that should be considered when using this paradigm.


Assuntos
Glândulas Suprarrenais/metabolismo , Restrição Calórica/psicologia , Condicionamento Psicológico/fisiologia , Neurônios/metabolismo , Recompensa , Tato , Adaptação Psicológica/fisiologia , Animais , Restrição Calórica/veterinária , Corticosterona/metabolismo , Exposição Ambiental , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal/fisiologia , Condicionamento Físico Animal/psicologia , RNA Mensageiro/metabolismo
15.
Eur Arch Psychiatry Clin Neurosci ; 266(7): 673-7, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26482736

RESUMO

NMDA receptor (NMDAR) antagonists induce in perinatal rodent cortical apoptosis and protracted schizophrenia-like alterations ameliorated by antipsychotic treatment. The broad-spectrum antibiotic minocycline elicits antipsychotic and neuroprotective effects. Here we tested, if minocycline protects also against apoptosis triggered by the NMDAR antagonist MK-801 at postnatal day 7. Surprisingly, minocycline induced widespread cortical apoptosis and exacerbated MK-801-triggered cell death. In some areas such as the subiculum, the pro-apoptotic effect of minocycline was even more pronounced than that elicited by MK-801. These data reveal among antipsychotics unique pro-apoptotic properties of minocycline, raising concerns regarding consequences for brain development and the use in children.


Assuntos
Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Minociclina/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Antibacterianos/administração & dosagem , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Minociclina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem
16.
Hippocampus ; 24(4): 424-35, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24339333

RESUMO

Adolescence is characterized by important molecular and anatomical changes with relevance for the maturation of brain circuitry and cognitive function. This time period is of critical importance in the emergence of several neuropsychiatric disorders accompanied by cognitive impairment, such as affective disorders and schizophrenia. The molecular mechanisms underlying these changes at neuronal level during this specific developmental stage remains however poorly understood. GluA1-containing AMPA receptors, which are located predominantly on hippocampal neurons, are the primary molecular determinants of synaptic plasticity. We investigated here the consequences of the inducible deletion of GluA1 AMPA receptors in glutamatergic neurons during late adolescence. We generated mutant mice with a tamoxifen-inducible deletion of GluA1 under the control of the CamKII promoter for temporally and spatially restricted gene manipulation. GluA1 ablation during late adolescence induced cognitive impairments, but also marked hyperlocomotion and sensorimotor gating deficits. Unlike the global genetic deletion of GluA1, inducible GluA1 ablation during late adolescence resulted in normal sociability. Deletion of GluA1 induced redistribution of GluA2 subunits, suggesting AMPA receptor trafficking deficits. Mutant animals showed increased hippocampal NMDA receptor expression and no change in striatal dopamine concentration. Our data provide new insight into the role of deficient AMPA receptors specifically during late adolescence in inducing several cognitive and behavioral alterations with possible relevance for neuropsychiatric disorders.


Assuntos
Transtornos Cognitivos/metabolismo , Corpo Estriado/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Comportamento Social , Animais , Corpo Estriado/crescimento & desenvolvimento , Dopamina/metabolismo , Hipocampo/crescimento & desenvolvimento , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo , Transtornos Mentais , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia , Fenótipo , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Filtro Sensorial/fisiologia
17.
Eur Arch Psychiatry Clin Neurosci ; 264(7): 625-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24895223

RESUMO

Glutamatergic dysfunctions have recently been postulated to play a considerable role in mood disorders. However, molecular mechanisms underlying these effects have been poorly deciphered. Previous work demonstrated the contribution of GluA1-containing AMPA receptors (AMPAR) to a depression-like and anxiety-like phenotype. Here we investigated the effect of temporally and spatially restricted gene manipulation of GluA1 on behavioural correlates of mood disorders in mice. Here we show that tamoxifen-induced GluA1 deletion restricted to forebrain glutamatergic neurons of post-adolescent mice does not induce depression- and anxiety-like changes. This differs from the phenotype of mice with global AMPAR deletion suggesting that for mood regulation AMPAR may be particularly important on inhibitory interneurons or already early in development.


Assuntos
Regulação da Expressão Gênica/genética , Desamparo Aprendido , Transtornos do Humor/patologia , Neurônios/metabolismo , Prosencéfalo/metabolismo , Receptores de AMPA/deficiência , Análise de Variância , Animais , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Transtornos do Humor/genética , Prosencéfalo/patologia , Tempo de Reação/fisiologia , Receptores de AMPA/genética , Tamoxifeno/farmacologia
18.
Schizophr Res ; 263: 109-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37524635

RESUMO

Catatonia is a psychiatric disorder, which subsumes a plethora of affective, motor and behavioral symptoms. In the last two decades, the number of behavioral and neuroimaging studies on catatonia has steadily increased. The majority of behavioral and neuroimaging studies in psychiatric patients suggested aberrant higher-order frontoparietal networks which, on the biochemical level, are insufficiently modulated by gamma-aminobutyric acid (GABA)-ergic and glutamatergic transmission. However, the pathomechanisms of catatonic symptoms have rarely been studied using rodent models. Here, we performed a scoping review of literature available on PubMed for studies on rodent models of catatonia. We sought to identify what we could learn from pre-clinical animal models of catatonia-like symptoms, their underlying neuronal correlates, and the complex molecular (i.e. genes and neurotransmitter) mechanisms by which its modulation exerts its effects. What becomes evident is that although many transgenic models present catatonia-like symptoms, they have not been used to better understand the pathophysiological mechanisms underlying catatonia so far. However, the identified neuronal correlates of catatonia-like symptoms correlate to a great extent with findings from neuroscience research in psychiatric patients. This points us towards fundamental cortical-striatal-thalamocortical and associated networks modulated by white matter inflammation as well as aberrant dopaminergic, GABAergic, and glutamatergic neurotransmission that is involved in catatonia. Therefore, this scoping review opens up the possibility of finally using transgenic models to help with identifying novel target mechanisms for the development of new drugs for the treatment of catatonia.


Assuntos
Catatonia , Animais , Humanos , Catatonia/diagnóstico , Ácido gama-Aminobutírico
19.
J Neural Transm (Vienna) ; 120(11): 1605-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23736946

RESUMO

The glutamate hypothesis of schizophrenia postulates NMDA receptor hypofunction as important pathophysiological mechanism. In rodents, NMDA receptor antagonists induce together with psychosis-like effects cortical injury. Stress during adolescence can trigger schizophrenia by unknown mechanisms. Here we show in rats that juvenile chronic isolation significantly increases MK-801-triggered expression of heat shock protein 70, a marker of neuronal injury, in the retrosplenial cortex. These data suggest an additive effect of juvenile stress and NMDA receptor blockade, with possible relevance for schizophrenia.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Maleato de Dizocilpina/toxicidade , Antagonistas de Aminoácidos Excitatórios/toxicidade , Neurônios/efeitos dos fármacos , Neurotoxinas/toxicidade , Isolamento Social , Animais , Córtex Cerebral/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Sci Rep ; 13(1): 16465, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777528

RESUMO

Low-carbohydrates diets are increasingly used to treat obesity and metabolic disorders. A very low-carbohydrate, ketogenic diet is hard to follow and, due to the very high fat content, linked to severe side effects, like hyperlipidemia and atherogenesis. Therefore, a less restrictive, unsaturated fat-based low-carbohydrate diet appears as a promising alternative. Since neither sex differences, nor their effect on specific metabolic hormones and adipose tissue compartments have been investigated thoroughly in these diets, we aimed to analyze their dynamics and metabolic factors in mice. We found a significant sexual dimorphism with decreased body weight and subcutaneous fat only in males on ketogenic diet, while diminished insulin, elevated ghrelin and FGF-21 were present with a differential time course in both sexes. The non-ketogenic moderate low-carbohydrate diet increased body weight and perigonadal fat in females, but induced leptin elevation in males. Both diets enhanced transiently TNFɑ only in males and had no impact on behavior. Altogether, these results reveal complex sex-dependent effect of dietary interventions, indicating unexpectedly females as more prone to unfavorable metabolic effects of low-carbohydrate diets.


Assuntos
Dieta Cetogênica , Feminino , Masculino , Camundongos , Animais , Caracteres Sexuais , Tecido Adiposo/metabolismo , Dieta com Restrição de Carboidratos , Obesidade/metabolismo , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA