Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
J Neurosci ; 43(2): 261-269, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36443001

RESUMO

Despite the clinical significance of prepulse inhibition (PPI), the mechanisms are not well understood. Herein, we present our investigation of PPI in the R1 component of electrically induced blink reflexes. The effect of a prepulse was explored with varying prepulse test intervals (PTIs) of 20-600 ms in 4 females and 12 males. Prepulse-test combinations included the following: stimulation of the supraorbital nerve (SON)-SON [Experiment (Exp) 1], sound-sound (Exp 2), the axon of the facial nerve-SON (Exp 3), sound-SON (Exp 4), and SON-SON with a long trial-trial interval (Exp 5). Results showed that (1) leading weak SON stimulation reduced SON-induced ipsilateral R1 with a maximum effect at a PTI of 140 ms, (2) the sound-sound paradigm resulted in a U-shaped inhibition time course of the auditory startle reflex (ASR) peaking at 140 ms PTI, (3) facial nerve stimulation showed only a weak effect on R1, (4) a weak sound prepulse facilitated R1 but strongly inhibited SON-induced late blink reflexes (LateRs) with a similar U-shaped curve, and (5) LateR in Exp 5 was almost completely absent at PTIs >80 ms. These results indicate that the principal sensory nucleus is responsible for R1 PPI. Inhibition of ASR or LateR occurs at a point in the startle reflex circuit where auditory and somatosensory signals converge. Although the two inhibitions are different in location, their similar time courses suggest similar neural mechanisms. As R1 has a simple circuit and is stable, R1 PPI helps to clarify PPI mechanisms.SIGNIFICANCE STATEMENT Prepulse inhibition (PPI) is a phenomenon in which the startle response induced by a startle stimulus is suppressed by a preceding nonstartle stimulus. This study demonstrated that the R1 component of the trigeminal blink reflex shows clear PPI despite R1 generation within a circuit consisting of the trigeminal and facial nuclei, without startle reflex circuit involvement. Thus, PPI is not specific to the startle reflex. In addition, PPI of R1, the auditory startle reflex, and the trigeminal late blink reflex showed similar time courses in response to the prepulse test interval, suggesting similar mechanisms regardless of inhibition site. R1 PPI, in conjunction with other paradigms with different prepulse-test combinations, would increase understanding of the underlying mechanisms.


Assuntos
Piscadela , Inibição Pré-Pulso , Masculino , Feminino , Humanos , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Som , Estimulação Acústica/métodos
2.
Muscle Nerve ; 70(2): 279-283, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837459

RESUMO

INTRODUCTION/AIMS: Paired-pulse stimulation provides clinically useful information regarding sensory inhibition. When supraorbital nerve stimulation is repeated within a short interval, the response to the second stimulation is reduced to varying degrees. This magnitude of change in stimulation response can be monitored by electromyogram (EMG) or by mechanomyogram (MMG) as in this report. MMG has some advantages such as being less time consuming and lacking stimulus artifact. We compared the use of MMG and EMG to validate MMG as an effective method of assessing blink reflex paired-pulse inhibition. METHODS: Eight volunteers participated. Participants received electrical stimulation to the supraorbital nerve of each side. A paired-pulse paradigm was employed, varying the conditioning-test interval between 5 and 800 ms. The R1 component of the induced blink reflex was simultaneously recorded by EMG using a pair of electrodes placed on the lower eyelid and by MMG using an accelerometer placed between the electrodes. RESULTS: The correlation coefficient of the R1 amplitude between MMG and EMG of the grand-averaged waveforms was 0.99. The average participant r value was .91 (range .76-.99). Similar analyses were performed for the amplitude variation of the second response relative to the first response. Results correlated well, yielding r values of .97 and .86 for the grand-averaged waveform and the average for each subject. DISCUSSION: The present results demonstrate that MMG could be an alternative to EMG in assessing paired-pulse inhibition of the electrical blink reflex R1 component.


Assuntos
Piscadela , Estimulação Elétrica , Eletromiografia , Humanos , Piscadela/fisiologia , Masculino , Adulto , Feminino , Estimulação Elétrica/métodos , Eletromiografia/métodos , Adulto Jovem , Miografia/métodos , Inibição Neural/fisiologia
3.
Cereb Cortex ; 33(12): 7678-7687, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36920227

RESUMO

Wind-up is a nociceptive-specific phenomenon in which pain sensations are facilitated, in a frequency-dependent manner, by the repeated application of noxious stimuli of constant intensity, with invariant tactile sensations. Thus, cortical activities during wind-up could be an alteration associated with pain potentiation. We aimed to investigate somatosensory-evoked cortical responses and induced brain oscillations during wind-up by recording magnetoencephalograms. Wind-up was produced by the application of 11 consecutive electrical stimuli to the sural nerve, repeated at a frequency of 1 Hz without varying the intensity. The augmentation of flexion reflexes and pain rating scores were measured simultaneously as an index of wind-up. In the time-frequency analyses, the γ-band late event-related synchronization and the ß-band event-related desynchronization were observed in the primary somatosensory region and the bilateral operculo-insular region, respectively. Repetitive exposure to the stimuli enhanced these activities, along with an increase in the flexion reflex magnitude. The evoked cortical activity reflected novelty, with no alteration to these repetitive stimuli. Observed oscillations enhanced by repetitive stimulation at a constant intensity could reflect a pain mechanism associated with wind-up.


Assuntos
Magnetoencefalografia , Dor , Humanos , Reflexo/fisiologia , Medição da Dor , Estimulação Elétrica
4.
Hum Brain Mapp ; 44(9): 3519-3540, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36988453

RESUMO

The present study performed a brain-wide network analysis of resting-state magnetoencephalograms recorded from 53 healthy participants to visualize elaborate brain maps of phase- and amplitude-derived graph-theory metrics at different frequencies. To achieve this, we conducted a vertex-wise computation of threshold-independent graph metrics by combining proportional thresholding and a conjunction analysis and applied them to a correlation analysis of age and brain networks. Source power showed a frequency-dependent cortical distribution. Threshold-independent graph metrics derived from phase- and amplitude-based connectivity showed similar or different distributions depending on frequency. Vertex-wise age-brain correlation maps revealed that source power at the beta band and the amplitude-based degree at the alpha band changed with age in local regions. The present results indicate that a brain-wide analysis of neuromagnetic data has the potential to reveal neurophysiological network features in the human brain in a resting state.


Assuntos
Rede Nervosa , Descanso , Humanos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Descanso/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Magnetoencefalografia/métodos , Imageamento por Ressonância Magnética/métodos
5.
Cereb Cortex ; 32(13): 2785-2796, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34689202

RESUMO

Gamma oscillations have received considerable attention owing to their association with cognitive function and various neuropsychiatric disorders. However, interactions of gamma oscillations at different frequency bands in humans remain unclear. In the present magnetoencephalographic study, brain oscillations in a wide frequency range were examined using a time-frequency analysis during the 20-, 30-, 40-, and 50-Hz auditory stimuli in 21 healthy subjects. First, dipoles for auditory steady-state response (ASSR) were estimated and interaction among oscillations at 10-60 Hz was examined using the source strength waveforms. Results showed the suppression of ongoing low-gamma oscillations at approximately 30 Hz during stimulation at 40 Hz. Second, multi-dipole analyses suggested that the main dipole for ASSR and dipoles for suppressed low-frequency gamma oscillations were distinct. Third, an all-sensor analysis was performed to clarify the distribution of the 40-Hz ASSR and suppression of low-frequency gamma oscillations. Notably, the area of suppression surrounded the center of the 40-Hz ASSR and showed a trend of extending to the vertex, indicating that different groups of neurons were responsible for these two gamma oscillations and that the 40-Hz oscillation circuit have specific inhibitory innervation to the low-gamma circuit.


Assuntos
Córtex Auditivo , Potenciais Evocados Auditivos , Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia , Ritmo Gama/fisiologia , Humanos , Magnetoencefalografia/métodos , Modalidades de Fisioterapia
6.
Brain Topogr ; 35(2): 241-250, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34748108

RESUMO

Paired pulse suppression is an electrophysiological method used to evaluate sensory suppression and often applied to patients with psychiatric disorders. However, it remains unclear whether the suppression comes from specific inhibitory mechanisms, refractoriness, or fatigue. In the present study, to investigate mechanisms of suppression induced by an auditory paired pulse paradigm in 19 healthy subjects, magnetoencephalography was employed. The control stimulus was a train of 25-ms pure tones of 65 dB SPL for 2500 ms. In order to evoke a test response, the sound pressure of two consecutive tones at 2200 ms in the control sound was increased to 80 dB (Test stimulus). Similar sound pressure changes were also inserted at 1000 (CS2) and 1600 (CS1) ms as conditioning stimuli. Four stimulus conditions were used; (1) Test alone, (2) Test + CS1, (3) Test + CS1 + CS2, and (4) Test + CS2, with the four sound stimuli randomly presented and cortical responses averaged at least 100 times for each condition. The baseline-to-peak and peak-to-peak amplitudes of the P50m, N100m, and P200m components of the test response were compared among the four conditions. In addition, the response to CS1 was compared between conditions (2) and (3). The results showed significant test response suppression by CS1. While the response to CS1 was significantly suppressed when CS2 was present, it did not affect suppression of the test response by CS1. It was thus suggested that the amplitude of the response to a conditioning stimulus is not a factor to determine the inhibitory effects of the test response, indicating that suppression is due to an external influence on the excitatory pathway.


Assuntos
Potenciais Evocados Auditivos , Magnetoencefalografia , Estimulação Acústica , Humanos
7.
Neuromodulation ; 25(3): 407-413, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35177377

RESUMO

OBJECTIVES: This study investigated neuronal sources of slow cortical potentials (SCPs) evoked during vagus nerve stimulation (VNS) in patients with epilepsy who underwent routine electroencephalography (EEG) after implantation of the device. MATERIALS AND METHODS: We analyzed routine clinical EEG from 24 patients. There were 5 to 26 trains of VNS during EEG. To extract SCPs from the EEG, a high-frequency filter of 0.2 Hz was applied. These EEG epochs were averaged and used for source analyses. The averaged waveforms for each patient and their grand average were subjected to multidipole analysis. Patients with at least 50% seizure frequency reduction were considered responders. Findings from EEG analysis dipole were compared with VNS responses. RESULTS: VNS-induced focal SCPs whose dipoles were estimated to be located in several cortical areas including the medial prefrontal cortex, postcentral gyrus, and insula, with a significantly higher frequency in patients with a good VNS response than in those with a poor response. CONCLUSIONS: This study suggested that some VNS-induced SCPs originating from the so-called vagus afferent network are related to the suppression of epileptic seizures.


Assuntos
Epilepsia , Estimulação do Nervo Vago , Eletroencefalografia , Epilepsia/terapia , Humanos , Convulsões , Resultado do Tratamento , Nervo Vago
8.
Hum Brain Mapp ; 41(17): 4892-4900, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32845051

RESUMO

Haptic memory briefly retains somatosensory information for later use; however, how and which cortical areas are affected by haptic memory remain unclear. We used change-related cortical responses to investigate the relationship between the somatosensory cortex and haptic memory objectively. Electrical pulses, at 50 Hz with a duration of 500 ms, were randomly applied to the second, third, and fourth fingers of the right and left hands at an even probability every 800 ms. Each stimulus was labeled as D (preceded by a different side) or S (preceded by the same side). The D stimuli were further classified into 1D, 2D, and 3D, according to the number of different preceding stimuli. The S stimuli were similarly divided into 1S and 2S. The somatosensory-evoked magnetic fields obtained were divided into four components via a dipole analysis, and each component's amplitudes were measured using the source strength waveform. The results showed that the preceding event did not affect the amplitude of the earliest 20-30 ms response in the primary somatosensory cortex. However, in the subsequent three components, the cortical activity amplitude was largest in 3D, followed by 2D, 1D, and S. These results indicate that such modulatory effects occurred somewhere in the somatosensory processing pathway higher than Brodmann's area 3b. To the best of our knowledge, this is the first study to demonstrate the existence of haptic memory for somatosensory laterality and its impact on the somatosensory cortex using change-related cortical responses without contamination from peripheral effects.


Assuntos
Potenciais Somatossensoriais Evocados/fisiologia , Dedos/fisiologia , Magnetoencefalografia , Memória/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Adulto , Estimulação Elétrica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Brain Topogr ; 32(5): 783-793, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31218521

RESUMO

Paired-pulse suppression refers to attenuation of neural activity in response to a second stimulus and has a pivotal role in inhibition of redundant sensory inputs. Previous studies have suggested that cortical responses to a somatosensory stimulus are modulated not only by a preceding same stimulus, but also by stimulus from a different submodality. Using magnetoencephalography, we examined somatosensory suppression induced by three different conditioning stimuli. The test stimulus was a train of electrical pulses to the dorsum of the left hand at 100 Hz lasting 1500 ms. For the pulse train, the intensity of the stimulus was abruptly increased at 1200 ms. Cortical responses to the abrupt intensity change were recorded and used as the test response. Conditioning stimuli were presented at 600 ms as pure tones, either innocuous or noxious electrical stimulation to the right foot. Four stimulus conditions were used: (1) Test alone, (2) Test + auditory stimulus, (3) Test + somatosensory stimulus, and (4) Test + nociceptive stimulus. Our results showed that the amplitude of the test response was significantly smaller for conditions (3) and (4) in the secondary somatosensory cortex contralateral (cSII) and ipsilateral (iSII) to the stimulated side as compared to the response to condition (1), whereas the amplitude of the response in the primary somatosensory cortex did not differ among the conditions. The auditory stimulus did not have effects on somatosensory change-related response. These findings show that somatosensory suppression was induced by not only a conditioning stimulus of the same somatosensory submodality and the same cutaneous site to the test stimulus, but also by that of a different submodality in a remote area.


Assuntos
Estimulação Elétrica , Potenciais Somatossensoriais Evocados/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Feminino , Mãos , Humanos , Magnetoencefalografia , Masculino
10.
BMC Ophthalmol ; 15: 162, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26553029

RESUMO

BACKGROUND: The latency and amplitude of visual evoked cortical responses are known to be affected by refractive states, suggesting that they may be used as an objective index of refractive errors. In order to establish an easy and reliable method for this purpose, we herein examined the effects of refractive errors on visual evoked magnetic fields (VEFs). METHODS: Binocular VEFs following the presentation of a simple grating of 0.16 cd/m(2) in the lower visual field were recorded in 12 healthy volunteers and compared among four refractive states: 0D, +1D, +2D, and +4D, by using plus lenses. RESULTS: The low-luminance visual stimulus evoked a main MEG response at approximately 120 ms (M100) that reversed its polarity between the upper and lower visual field stimulations and originated from the occipital midline area. When refractive errors were induced by plus lenses, the latency of M100 increased, while its amplitude decreased with an increase in power of the lens. Differences from the control condition (+0D) were significant for all three lenses examined. The results of dipole analyses showed that evoked fields for the control (+0D) condition were explainable by one dipole in the primary visual cortex (V1), while other sources, presumably in V3 or V6, slightly contributed to shape M100 for the +2D or +4D condition. CONCLUSIONS: The present results showed that the latency and amplitude of M100 are both useful indicators for assessing refractive states. The contribution of neural sources other than V1 to M100 was modest under the 0D and +1D conditions. By considering the nature of the activity of M100 including its high sensitivity to a spatial frequency and lower visual field dominance, a simple low-luminance grating stimulus at an optimal spatial frequency in the lower visual field appears appropriate for obtaining data on high S/N ratios and reducing the load on subjects.


Assuntos
Potenciais Evocados Visuais/fisiologia , Campos Magnéticos , Erros de Refração/fisiopatologia , Córtex Visual/fisiologia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Campos Visuais/fisiologia , Adulto Jovem
11.
Neuroimage ; 101: 416-24, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25067817

RESUMO

We previously demonstrated that auditory-evoked cortical responses were suppressed by a weak leading stimulus in a manner similar to the prepulse inhibition (PPI) of startle reflexes. The purpose of the present study was to investigate whether a similar phenomenon was present in the somatosensory system, and also whether this suppression reflected an inhibitory process. We recorded somatosensory-evoked magnetic fields following stimulation of the median nerve and evaluated the extent by which they were suppressed by inserting leading stimuli at an intensity of 2.5-, 1.5-, 1.1-, or 0.9-fold the sensory threshold (ST) in healthy participants (Experiment 1). The results obtained demonstrated that activity in the secondary somatosensory cortex in the hemisphere contralateral to the stimulated side (cSII) was significantly suppressed by a weak leading stimulus with the intensity larger than 1.1-fold ST. This result implied that the somatosensory system had an inhibitory process similar to that of PPI. We then presented two successive leading stimuli before the test stimulus, and compared the extent of suppression between the test stimulus-evoked responses and those obtained with the second prepulse alone and with two prepulses (first and second) (Experiment 2). When two prepulses were preceded, cSII responses to the second prepulse were suppressed by the first prepulse, whereas the ability of the second prepulse to suppress the test stimulus remained unchanged. These results suggested the presence of at least two individual pathways; response-generating and inhibitory pathways.


Assuntos
Potenciais Somatossensoriais Evocados/fisiologia , Magnetoencefalografia/métodos , Inibição Pré-Pulso/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Estimulação Elétrica , Feminino , Humanos , Masculino , Nervo Mediano/fisiologia , Pessoa de Meia-Idade
12.
Neuroimage ; 86: 131-7, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23933044

RESUMO

Changes in continuous sounds elicit a preattentive component that peaks at around 100ms (Change-N1m) on electroencephalograms or magnetoencephalograms (MEG). Change-N1m is thought to reflect brain activity relating to the automatic detection of changes, which facilitate processes for the execution of appropriate behavior in response to new environmental events. The aim of the present MEG study was to elucidate whether a component relating to auditory changes existed earlier than N1m. Change-related cortical responses were evoked by abrupt sound movement in a train of clicks at 100Hz. Sound movement was created by inserting an interaural time delay (ITD) of 0.15, 0.25, 0.35, and 0.45ms into the right ear. Ten out of 12 participants exhibited clear change-related cortical responses earlier than Change-N1m at around 60ms (Change-P50m). The results of source analysis showed that Change-P50m originated from the superior temporal gyrus of both hemispheres and that its location did not differ significantly from dipoles for the response to the sound onset. The magnitude of Change-P50m increased and the peak latency shortened with an increase in the ITD, similar to those of Change-N1m. These results suggest that change-related cortical activity is present as early as its onset latency at around 50ms.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Potenciais Evocados Auditivos/fisiologia , Magnetoencefalografia/métodos , Adaptação Fisiológica/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação/fisiologia , Adulto Jovem
13.
Nat Genet ; 37(5): 468-70, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15821733

RESUMO

Roberts syndrome is an autosomal recessive disorder characterized by craniofacial anomalies, tetraphocomelia and loss of cohesion at heterochromatic regions of centromeres and the Y chromosome. We identified mutations in a new human gene, ESCO2, associated with Roberts syndrome in 15 kindreds. The ESCO2 protein product is a member of a conserved protein family that is required for the establishment of sister chromatid cohesion during S phase and has putative acetyltransferase activity.


Assuntos
Acetiltransferases/genética , Cromátides/fisiologia , Proteínas Cromossômicas não Histona/genética , Pareamento Cromossômico/fisiologia , Fenda Labial/genética , Fissura Palatina/genética , Ectromelia/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Acetiltransferases/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Ectromelia/metabolismo , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Proteínas Nucleares/fisiologia , Linhagem , Proteínas de Saccharomyces cerevisiae/fisiologia
14.
Front Neurosci ; 18: 1357368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841093

RESUMO

Prepulse inhibition (PPI) is a well-established phenomenon wherein a weak sensory stimulus attenuates the startle reflex triggered by a subsequent strong stimulus. Within the circuit, variations in target responses observed for PPI paradigms represent prepulse-induced excitability changes. However, little is known about the mechanism of PPI. Here, we focused on short-latency PPI of the trigeminal blink reflex R1 signal with an oligosynaptic reflex arc through the principal sensory trigeminal nucleus and the facial nucleus. As the facial nucleus is facilitatory to any input, R1 PPI is the phenomenon in the former nucleus. Considering that GABAergic modulation may be involved in PPI, this study investigated whether the PPI mechanism includes GABA-A equivalent inhibition, which peaks at approximately 30 ms in humans. In 12 healthy volunteers, the reflex was elicited by electrical stimulation of the supraorbital nerve, and recorded at the ipsilateral lower eyelid by accelerometer. Stimulus intensity was 1.5 times the R1 threshold for test stimulus and 0.9 times for the prepulse. The prepulse-test interval (PTI) was 5-150 ms. Results showed significant inhibition at 40-and 80-150-ms PTIs but not at 20-, 30-, 50-, 60-, and 70-ms PTIs, yielding two distinct inhibitions of different time scales. This corresponds well to the early and late components of inhibitory post synaptic potentials by GABA-A and GABA-B receptor activation. Thus, the data support the contribution of inhibitory post synaptic potentials elicited by the prepulse to the observed PPI. As inhibitory function-related diseases may impair the different inhibition components to varying degrees, methods deconvoluting each inhibitory component contribution are of clinical importance.

15.
Front Neurosci ; 18: 1378619, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655109

RESUMO

Responses to a sensory stimulus are inhibited by a preceding stimulus; if the two stimuli are identical, paired-pulse suppression (PPS) occurs; if the preceding stimulus is too weak to reliably elicit the target response, prepulse inhibition (PPI) occurs. PPS and PPI represent excitability changes in neural circuits induced by the first stimulus, but involve different mechanisms and are impaired in different diseases, e.g., impaired PPS in schizophrenia and Alzheimer's disease and impaired PPI in schizophrenia and movement disorders. Therefore, these measures provide information on several inhibitory mechanisms that may have roles in clinical conditions. In the present study, PPS and PPI of the auditory change-related cortical response were examined to establish normative data on healthy subjects (35 females and 32 males, aged 19-70 years). We also investigated the effects of age and sex on PPS and PPI to clarify whether these variables need to be considered as biases. The test response was elicited by an abrupt increase in sound pressure in a continuous sound and was recorded by electroencephalography. In the PPS experiment, the two change stimuli to elicit the cortical response were a 15-dB increase from the background of 65 dB separated by 600 ms. In the PPI experiment, the prepulse and test stimuli were 2- and 10-dB increases, respectively, with an interval of 50 ms. The results obtained showed that sex exerted similar effects on the two measures, with females having stronger test responses and weaker inhibition. On the other hand, age exerted different effects: aging correlated with stronger test responses and weaker inhibition in the PPS experiment, but had no effects in the PPI experiment. The present results suggest age and sex biases in addition to normative data on PPS and PPI of auditory change-related potentials. PPS and PPI, as well as other similar paradigms, such as P50 gating, may have different and common mechanisms. Collectively, they may provide insights into the pathophysiologies of diseases with impaired inhibitory function.

16.
Exp Brain Res ; 226(3): 347-55, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23417649

RESUMO

Psychophysical and visual evoked potential (VEP) studies have shown that spatial frequency of a visual stimulus affects contrast sensitivity and VEPs in humans. However, it is not clear whether and how the effect of spatial frequency varies among cortical areas. Considering that all visual inputs to the retina could be expressed as a sum of sinusoidal gratings of different spatial frequencies, the effect of spatial frequency must be clarified to separate the brain activity specific to each visual stimulus. In order to examine the effect of spatial frequency on different cortical areas, the present study compared cortical responses to sinusoidal gratings of seven different spatial frequencies using magnetoencephalography (MEG). MEG waveforms of twelve healthy adults in response to sinusoidal gratings of 0.3-18.1 cycles per degree were subjected to a multi-dipole analysis. As a result, the effect of spatial frequency was significant on the first peak latency and amplitude of the source activity around V1 and V2 but not on the source activity around V3 and V6, indicating that the effect of spatial frequency varies across different visual areas in the human brain. Our results also suggest that the responses in V1 and V2 that have a peak around 90 ms and that of V6 peaking around 120 ms should be separated to investigate the stimulus-specific cortical response, particularly when examining effects of spatial frequency on the response latency.


Assuntos
Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adulto , Mapeamento Encefálico , Sensibilidades de Contraste/fisiologia , Feminino , Humanos , Campos Magnéticos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Tempo de Reação/fisiologia
17.
Neuroscience ; 514: 92-99, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435478

RESUMO

Prepulse inhibition (PPI) is sensory suppression whose mechanism (i.e., whether PPI originates from specific inhibitory mechanisms) remains unclear. In this study, we applied the combination of short-latency PPI and long-latency paired pulse suppression in 17 healthy subjects using magnetoencephalography to investigate the mechanisms of sensory suppression. Repeats of a 25-ms pure tone without a blank at 800 Hz and 70 dB were used for a total duration of 1600 ms. To elicit change-related cortical responses, the sound pressure of two consecutive tones in this series at 1300 ms was increased to 80 dB (Test). For the conditioning stimuli, the sound pressure was increased to 73 dB at 1250 ms (Pre 1) and 80 dB at 700 ms (Pre 2). Six stimuli were randomly presented as follows: (1) Test alone, (2) Pre 1 alone, (3) Pre 1 + Test, (4) Pre 2 + Test, (5) Pre 2 + Pre 1, and (6) Pre 2 + Pre 1 + Test. The inhibitory effects of the conditioning stimuli were evaluated using N100m/P200m components. The results showed that both Pre 1 and Pre 2 significantly suppressed the Test response. Moreover, the inhibitory effects of Pre 1 and Pre 2 were additive. However, when both prepulses were present, Pre 2 significantly suppressed the Pre 1 response, suggesting that the Pre 1 response amplitude was not a determining factor for the degree of suppression. These results suggested that the suppression originated from a specific inhibitory circuit independent of the excitatory pathway.


Assuntos
Potenciais Evocados Auditivos , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Inibição Pré-Pulso/fisiologia , Som
18.
Front Neurosci ; 17: 1127040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908794

RESUMO

The 40-Hz auditory steady-state response (ASSR) has received special attention as an index of gamma oscillations owing to its association with various neuropsychiatric disorders including schizophrenia. When a periodic stimulus is presented, oscillatory responses are often elicited not only at the stimulus frequency, but also at its harmonic frequencies. However, little is known about the effect of 40-Hz subharmonic stimuli on the activity of the 40-Hz ASSR. In the present magnetoencephalography study, we focused on the nature of oscillation harmonics and examined oscillations in a wide frequency range using a time-frequency analysis during the 6.67-, 8-, 10-, 13.3-, 20-, and 40-Hz auditory stimuli in 23 healthy subjects. The results suggested that the 40-Hz ASSR represents activation of a specific circuit tuned to this frequency. Particularly, oscillations elicited by 13.3- and 20-Hz stimuli exhibited significant enhancement at 40 Hz without changing those at the stimulus frequency. In addition, it was found that there was a non-linear response to stimulation in the beta band. We also demonstrated that the inhibition of beta to low-gamma oscillations by the 40-Hz circuit contributed to the violation of the rule that harmonic oscillations gradually decrease at higher frequencies. These findings can advance our understanding of oscillatory abnormalities in patients with schizophrenia in the future.

19.
BMC Neurosci ; 13: 7, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22221469

RESUMO

BACKGROUND: Auditory sustained responses have been recently suggested to reflect neural processing of speech sounds in the auditory cortex. As periodic fluctuations below the pitch range are important for speech perception, it is necessary to investigate how low frequency periodic sounds are processed in the human auditory cortex. Auditory sustained responses have been shown to be sensitive to temporal regularity but the relationship between the amplitudes of auditory evoked sustained responses and the repetitive rates of auditory inputs remains elusive. As the temporal and spectral features of sounds enhance different components of sustained responses, previous studies with click trains and vowel stimuli presented diverging results. In order to investigate the effect of repetition rate on cortical responses, we analyzed the auditory sustained fields evoked by periodic and aperiodic noises using magnetoencephalography. RESULTS: Sustained fields were elicited by white noise and repeating frozen noise stimuli with repetition rates of 5-, 10-, 50-, 200- and 500 Hz. The sustained field amplitudes were significantly larger for all the periodic stimuli than for white noise. Although the sustained field amplitudes showed a rising and falling pattern within the repetition rate range, the response amplitudes to 5 Hz repetition rate were significantly larger than to 500 Hz. CONCLUSIONS: The enhanced sustained field responses to periodic noises show that cortical sensitivity to periodic sounds is maintained for a wide range of repetition rates. Persistence of periodicity sensitivity below the pitch range suggests that in addition to processing the fundamental frequency of voice, sustained field generators can also resolve low frequency temporal modulations in speech envelope.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Potenciais Evocados Auditivos/fisiologia , Ruído , Periodicidade , Estimulação Acústica/métodos , Adulto , Análise de Variância , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Psicoacústica , Tempo de Reação
20.
BMC Neurosci ; 13: 135, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23113968

RESUMO

BACKGROUND: Prepulse inhibition (PPI) of the startle response is an important tool to investigate the biology of schizophrenia. PPI is usually observed by use of a startle reflex such as blinking following an intense sound. A similar phenomenon has not been reported for cortical responses. RESULTS: In 12 healthy subjects, change-related cortical activity in response to an abrupt increase of sound pressure by 5 dB above the background of 65 dB SPL (test stimulus) was measured using magnetoencephalography. The test stimulus evoked a clear cortical response peaking at around 130 ms (Change-N1m). In Experiment 1, effects of the intensity of a prepulse (0.5 ~ 5 dB) on the test response were examined using a paired stimulation paradigm. In Experiment 2, effects of the interval between the prepulse and test stimulus were examined using interstimulus intervals (ISIs) of 50 ~ 350 ms. When the test stimulus was preceded by the prepulse, the Change-N1m was more strongly inhibited by a stronger prepulse (Experiment 1) and a shorter ISI prepulse (Experiment 2). In addition, the amplitude of the test Change-N1m correlated positively with both the amplitude of the prepulse-evoked response and the degree of inhibition, suggesting that subjects who are more sensitive to the auditory change are more strongly inhibited by the prepulse. CONCLUSIONS: Since Change-N1m is easy to measure and control, it would be a valuable tool to investigate mechanisms of sensory gating or the biology of certain mental diseases such as schizophrenia.


Assuntos
Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Inibição Psicológica , Filtro Sensorial/fisiologia , Estimulação Acústica/métodos , Adulto , Análise de Variância , Eletromiografia , Feminino , Humanos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Psicoacústica , Tempo de Reação , Reflexo de Sobressalto , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA