Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Neuroimage ; 110: 149-61, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25665964

RESUMO

The cerebellum participates in emotion-related neural circuits formed by different cortical and subcortical areas, which sub-serve arousal and valence. Recent neuroimaging studies have shown a functional specificity of cerebellar lobules in the processing of emotional stimuli. However, little is known about the temporal component of this process. The goal of the current study is to assess the spatiotemporal profile of neural responses within the cerebellum during the processing of arousal and valence. We hypothesized that the excitation and timing of distinct cerebellar lobules is influenced by the emotional content of the stimuli. By using magnetoencephalography, we recorded magnetic fields from twelve healthy human individuals while passively viewing affective pictures rated along arousal and valence. By using a beamformer, we localized gamma-band activity in the cerebellum across time and we related the foci of activity to the anatomical organization of the cerebellum. Successive cerebellar activations were observed within distinct lobules starting ~160ms after the stimuli onset. Arousal was processed within both vermal (VI and VIIIa) and hemispheric (left Crus II) lobules. Valence (left VI) and its interaction (left V and left Crus I) with arousal were processed only within hemispheric lobules. Arousal processing was identified first at early latencies (160ms) and was long-lived (until 980ms). In contrast, the processing of valence and its interaction to arousal was short lived at later stages (420-530ms and 570-640ms respectively). Our findings provide for the first time evidence that distinct cerebellar lobules process arousal, valence, and their interaction in a parallel yet temporally hierarchical manner determined by the emotional content of the stimuli.


Assuntos
Nível de Alerta/fisiologia , Cerebelo/fisiologia , Emoções/fisiologia , Adulto , Mapeamento Encefálico , Cerebelo/anatomia & histologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Estimulação Luminosa , Adulto Jovem
2.
Neural Plast ; 2015: 172192, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945260

RESUMO

The present study investigates whether a combined cognitive and physical training may induce changes in the cortical activity as measured via electroencephalogram (EEG) and whether this change may index a deceleration of pathological processes of brain aging. Seventy seniors meeting the clinical criteria of mild cognitive impairment (MCI) were equally divided into 5 groups: 3 experimental groups engaged in eight-week cognitive and/or physical training and 2 control groups: active and passive. A 5-minute long resting state EEG was measured before and after the intervention. Cortical EEG sources were modelled by exact low resolution brain electromagnetic tomography (eLORETA). Cognitive function was assessed before and after intervention using a battery of neuropsychological tests including the minimental state examination (MMSE). A significant training effect was identified only after the combined training scheme: a decrease in the post- compared to pre-training activity of precuneus/posterior cingulate cortex in delta, theta, and beta bands. This effect was correlated to improvements in cognitive capacity as evaluated by MMSE scores. Our results indicate that combined physical and cognitive training shows indices of a positive neuroplastic effect in MCI patients and that EEG may serve as a potential index of gains versus cognitive declines and neurodegeneration. This trial is registered with ClinicalTrials.gov Identifier NCT02313935.


Assuntos
Córtex Cerebral/fisiopatologia , Terapia Cognitivo-Comportamental , Disfunção Cognitiva/terapia , Demência/terapia , Terapia por Exercício , Plasticidade Neuronal , Idoso , Disfunção Cognitiva/fisiopatologia , Terapia Combinada , Demência/fisiopatologia , Eletroencefalografia , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Fatores de Risco , Resultado do Tratamento
3.
Psychopharmacology (Berl) ; 241(4): 653-685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430396

RESUMO

BACKGROUND: Varenicline is considered one of the most effective treatment options for smoking cessation. Nonetheless, it is only modestly effective. A deeper comprehension of the effects of varenicline by means of the in-depth review of relevant fMRI studies may assist in paving the development of more targeted and effective treatments. METHODOLOGY: A search of PubMed and Google Scholar databases was conducted with the keywords "functional magnetic resonance imaging" or "fMRI", and "varenicline". All peer-reviewed articles regarding the assessment of smokers with fMRI while undergoing treatment with varenicline and meeting the predefined criteria were included. RESULTS: Several studies utilizing different methodologies and targeting different aspects of brain function were identified. During nicotine withdrawal, decreased mesocorticolimbic activity and increased amygdala activity, as well as elevated amygdala-insula and insula-default-mode-network functional connectivity are alleviated by varenicline under specific testing conditions. However, other nicotine withdrawal-induced changes, including the decreased reward responsivity of the ventral striatum, the bilateral dorsal striatum and the anterior cingulate cortex are not influenced by varenicline suggesting a task-dependent divergence in neurocircuitry activation. Under satiety, varenicline treatment is associated with diminished cue-induced activation of the ventral striatum and medial orbitofrontal cortex concomitant with reduced cravings; during the resting state, varenicline induces activation of the lateral orbitofrontal cortex and suppression of the right amygdala. CONCLUSIONS: The current review provides important clues with regard to the neurobiological mechanism of action of varenicline and highlights promising research opportunities regarding the development of more selective and effective treatments and predictive biomarkers for treatment efficacy.


Assuntos
Abandono do Hábito de Fumar , Síndrome de Abstinência a Substâncias , Humanos , Vareniclina/farmacologia , Vareniclina/uso terapêutico , Abandono do Hábito de Fumar/métodos , Nicotina , Imageamento por Ressonância Magnética , Agonistas Nicotínicos/uso terapêutico , Encéfalo/diagnóstico por imagem
4.
Front Physiol ; 15: 1446868, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156825

RESUMO

Introduction: ECG Derived Respiration (EDR) are a set of methods used for extracting the breathing rate from the Electrocardiogram (ECG). Recent studies revealed a tight connection between breathing rate and more specifically the breathing patterns during sleep and several related pathologies. Yet, while breathing rate and more specifically the breathing pattern is recognised as a vital sign it is less employed than Electroencephalography (EEG) and heart rate in sleep and polysomnography studies. Methods: This study utilised open-access data from the ISRUC sleep database to test a novel spectral-based EDR technique (scEDR). In contrast to previous approaches, the novel method emphasizes spectral continuity and not only the power of the different spectral peaks. scEDR is then compared against a more widely used spectral EDR method that selects the frequency with the highest power as the respiratory frequency (Max Power EDR). Results: scEDR yielded improved performance against the more widely used Max Power EDR in terms of accuracy across all sleep stages and the whole sleep. This study further explores the breathing rate across sleep stages, providing evidence in support of a putative sleep stage "REM0" which was previously proposed based on analysis of the Heart Rate Variability (HRV) but not yet widely discussed. Most importantly, this study observes that the frequency distribution of the heart rate during REM0 is closer to REM than other NREM periods even though most of REM0 was previously classified as NREM sleep by sleep experts following either the original or revised sleep staging criteria. Discussion: Based on the results of the analysis, this study proposes scEDR as a potential low-cost and non-invasive method for extracting the breathing rate using the heart rate during sleep with further studies required to validate its accuracy in awake subjects. In this study, the autonomic balance across different sleep stages, including REM0, was examined using HRV as a metric. The results suggest that sympathetic activity decreases as sleep progresses to NREM3 until it reaches a level similar to the awake state in REM through a transition from REM0.

5.
Front Syst Neurosci ; 17: 1305022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250330

RESUMO

Introduction: One of the primary motivations for studying the human brain is to comprehend how external sensory input is processed and ultimately perceived by the brain. A good understanding of these processes can promote the identification of biomarkers for the diagnosis of various neurological disorders; it can also provide ways of evaluating therapeutic techniques. In this work, we seek the minimal requirements for identifying key stages of activity in the brain elicited by median nerve stimulation. Methods: We have used a priori knowledge and applied a simple, linear, spatial filter on the electroencephalography and magnetoencephalography signals to identify the early responses in the thalamus and cortex evoked by short electrical stimulation of the median nerve at the wrist. The spatial filter is defined first from the average EEG and MEG signals and then refined using consistency selection rules across ST. The refined spatial filter is then applied to extract the timecourses of each ST in each targeted generator. These ST timecourses are studied through clustering to quantify the ST variability. The nature of ST connectivity between thalamic and cortical generators is then studied within each identified cluster using linear and non-linear algorithms with time delays to extract linked and directional activities. A novel combination of linear and non-linear methods provides in addition discrimination of influences as excitatory or inhibitory. Results: Our method identifies two key aspects of the evoked response. Firstly, the early onset of activity in the thalamus and the somatosensory cortex, known as the P14 and P20 in EEG and the second M20 for MEG. Secondly, good estimates are obtained for the early timecourse of activity from these two areas. The results confirm the existence of variability in ST brain activations and reveal distinct and novel patterns of connectivity in different clusters. Discussion: It has been demonstrated that we can extract new insights into stimulus processing without the use of computationally costly source reconstruction techniques which require assumptions and detailed modeling of the brain. Our methodology, thanks to its simplicity and minimal computational requirements, has the potential for real-time applications such as in neurofeedback systems and brain-computer interfaces.

6.
Neuroimage ; 60(3): 1638-51, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22342803

RESUMO

Different attention types select and focus brain resources on relevant sensory information. However, key questions remain unresolved: when and where cortical visual processing is first modulated by different types of attention? How do such modulatory effects spread thereafter? Here, we address these issues for spatial and category-specific types of attention using magnetoencephalography (MEG). First we identified the dynamics of visual attention-independent sensory processing to serve as a baseline framework for the attentional modulations of interest. We found that visual information is processed through the entire hierarchy of visual areas in at least two phases, in the 40-130 ms and 130-230 ms periods respectively. Spatial attention modulations were identified from the beginning of the initial stimulus-evoked response in the primary visual cortex ~70 ms post-stimulus. Category-specific attention modulated face processing beginning from the first face-specific response in high-level object-related areas ~100 ms post-stimulus, substantially earlier than previously reported for face-directed attention. Thus both attention types modulated responses during the first processing phase, beginning at the earliest brain area capable of coding the attentional target. Thereafter attentional effects propagated through the visual cortex together with the stimulus-evoked activity. Category-specific attention did not affect the first-phase responses in low-level strongly retinotopic visual areas, while the second-phase responses were enhanced when the stimulus was the response target and reduced when it was a distractor. Responses during both phases in high-level object-related areas were enhanced by category-specific attention independent of their target/distractor status. Spatial attention effects were stronger in low-level areas, whereas category-specific attention effects were stronger in high-level object-related areas.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Sinais (Psicologia) , Rede Nervosa/fisiologia , Mascaramento Perceptivo/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino
7.
Neuroimage ; 63(3): 1464-77, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22877580

RESUMO

The spatiotemporal profiles of visual processing are normally distributed in two temporal phases, each lasting about 100 ms. Within each phase, cortical processing begins in V1 and traverses the visual cortical hierarchy. However, the causal role of V1 in starting each of these two phases is unknown. Here we used magnetoencephalography to study the spatiotemporal profiles of visual processing and the causal contribution of V1 in three neurologically intact participants and in a rare patient (GY) with unilateral destruction of V1, in whom residual visual functions mediated by the extra-geniculostriate pathways have been reported. In healthy subjects, visual processing in the first 200 ms post-stimulus onset proceeded in the two usual phases. Normally perceived stimuli in the left hemifield of GY elicited a spatiotemporal profile in the intact right hemisphere that closely matched that of healthy subjects. However, stimuli presented in the cortically blind hemifield produced no detectable response during the first phase of processing, indicating that the responses in extrastriate visual areas during this phase are determined by the feedforward progression of activity initiated in V1. The first responses occurred during the second processing phase, in the ipsilesional high-level visual areas. The activity then spread forward toward higher-level areas and backward toward lower-level areas. However, in contrast to responses in the intact hemisphere, the back-propagated activity in the early visual cortex did not exhibit the classic retinotopic organization and did not have well-defined response peaks.


Assuntos
Mapeamento Encefálico , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Processamento de Sinais Assistido por Computador
8.
Curr Res Physiol ; 5: 118-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35243361

RESUMO

High amplitude electroencephalogram (EEG) events, like unitary K-complex (KC), are used to partition sleep into stages and hence define the hypnogram, a key instrument of sleep medicine. Throughout sleep the heart rate (HR) changes, often as a steady HR increase leading to a peak, what is known as a heart rate surge (HRS). The hypnogram is often unavailable when most needed, when sleep is disturbed and the graphoelements lose their identity. The hypnogram is also difficult to define during normal sleep, particularly at the start of sleep and the periods that precede and follow rapid eye movement (REM) sleep. Here, we use objective quantitative criteria that group together periods that cannot be assigned to a conventional sleep stage into what we call REM0 periods, with the presence of a HRS one of their defining properties. Extended REM0 periods are characterized by highly regular sequences of HRS that generate an infra-low oscillation around 0.05 Hz. During these regular sequence of HRS, and just before each HRS event, we find avalanches of high amplitude events for each one of the mass electrophysiological signals, i.e. related to eye movement, the motor system and the general neural activity. The most prominent features of long REM0 periods are sequences of three to five KCs which we label multiple K-complexes (KCm). Regarding HRS, a clear dissociation is demonstrated between the presence or absence of high gamma band spectral power (55-95 Hz) of the two types of KCm events: KCm events with strong high frequencies (KCmWSHF) cluster just before the peak of HRS, while KCm between HRS show no increase in high gamma band (KCmNOHF). Tomographic estimates of activity from magnetoencephalography (MEG) in pre-KC periods (single and multiple) showed common increases in the cholinergic Nucleus Basalis of Meynert in the alpha band. The direct contrast of KCmWSHF with KCmNOHF showed increases in all subjects in the high sigma band in the base of the pons and in three subjects in both the delta and high gamma bands in the medial Pontine Reticular Formation (mPRF), the putative Long Lead Initial pulse (LLIP) for Ponto-Geniculo-Occipital (PGO) waves.

9.
Neuroimage ; 54(1): 60-73, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20691793

RESUMO

This study combines source analysis imaging data for early somatosensory processing and the probabilistic cytoarchitectonic maps (PCMs). Human somatosensory evoked fields (SEFs) were recorded by stimulating left and right median nerves. Filtering the recorded responses in different frequency ranges identified the most responsive frequency band. The short-latency averaged SEFs were analyzed using a single equivalent current dipole (ECD) model and magnetic field tomography (MFT). The identified foci of activity were superimposed with PCMs. Two major components of opposite polarity were prominent around 21 and 31 ms. A weak component around 25 ms was also identified. For the most responsive frequency band (50-150 Hz) ECD and MFT revealed one focal source at the contralateral Brodmann area 3b (BA3b) at the peak of N20. The component ~25 ms was localised in Brodmann area 1 (BA1) in 50-150 Hz. By using ECD, focal generators around 28-30 ms located initially in BA3b and 2 ms later to BA1. MFT also revealed two focal sources - one in BA3b and one in BA1 for these latencies. Our results provide direct evidence that the earliest cortical response after median nerve stimulation is generated within the contralateral BA3b. BA1 activation few milliseconds later indicates a serial mode of somatosensory processing within cytoarchitectonic SI subdivisions. Analysis of non-invasive magnetoencephalography (MEG) data and the use of PCMs allow unambiguous and quantitative (probabilistic) interpretation of cytoarchitectonic identity of activated areas following median nerve stimulation, even with the simple ECD model, but only when the model fits the data extremely well.


Assuntos
Mãos/fisiologia , Nervo Mediano/anatomia & histologia , Nervo Mediano/fisiologia , Adulto , Algoritmos , Estimulação Elétrica , Eletroculografia , Potenciais Evocados/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Lateralidade Funcional , Mãos/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Masculino , Método de Monte Carlo , Probabilidade , Polegar/inervação , Interface Usuário-Computador , Punho/anatomia & histologia , Punho/fisiologia
10.
Hum Brain Mapp ; 31(1): 1-13, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19621367

RESUMO

We studied the spatiotemporal characteristics of cortical activity in early visual areas and the fusiform gyri (FG) by means of magnetoencephalography (MEG). Subjects performed a visual classification task, in which letters and visually similar pseudoletters were presented in different surrounds and under different task demands. The stimuli appeared in a cued half of the visual field (VF). We observed prestimulus effects on amplitudes in V1 and Cuneus relating to VF and task demands, suggesting a combination of active anticipation and specialized routing of activity in visual processing. Amplitudes in the right FG between 150 and 350 ms after stimulus onset reflected task demands, while those in the left FG between 300 and 400 ms showed selectivity for graphemes. The contrasting stimulus-evoked effects in the right and left FG show that the former area is sensitive to task demands irrespective of stimulus content, whereas the left FG is sensitive to stimulus content irrespectively of task demand.


Assuntos
Lateralidade Funcional/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Percepção Espacial/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adulto , Mapeamento Encefálico , Sinais (Psicologia) , Dominância Cerebral/fisiologia , Humanos , Magnetoencefalografia , Masculino , Processos Mentais/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Lobo Occipital/anatomia & histologia , Lobo Occipital/fisiologia , Estimulação Luminosa , Tempo de Reação/fisiologia , Leitura , Simbolismo , Lobo Temporal/anatomia & histologia , Lobo Temporal/fisiologia , Comportamento Verbal/fisiologia , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia
11.
Brain Topogr ; 23(1): 14-26, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19809873

RESUMO

Under conditions of inattention or deficits in orienting attention, special classes of stimuli (e.g. faces, bodies) are more likely to be perceived than other stimuli. This suggests that biologically salient visual stimuli automatically recruit attention, even when they are task-irrelevant or ignored. Here we report results from a behavioral experiment with female and male subjects and two magnetoencephalography (MEG) experiments with male subjects only, in which we investigated attentional capture with face and hand stimuli. In both the behavioral and MEG experiments, subjects were required to count the number of gender-specific targets from either face or hand categories within a block of stimuli. In the behavioral experiment, we found that male subjects were significantly more accurate in response to female than male face target blocks. There was no corresponding effect found in response to hand target blocks. Female subjects did not show a gender-based difference in response to face or hand target blocks. MEG results indicated that the male subjects' responses to face stimuli in primary visual cortex (V1) and the face-selective part of the fusiform gyrus (FG) were reduced when male face stimuli were not relevant to the task, whereas female faces maintained a strong response in these areas in both task-relevant and task-irrelevant conditions. These results suggest that within the male brain, female face stimuli are more resilient to suppression than male faces, once attention is drawn to the part of the visual field where the face appears.


Assuntos
Atenção/fisiologia , Face , Caracteres Sexuais , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Mãos , Humanos , Magnetoencefalografia , Masculino , Estimulação Luminosa , Processamento de Sinais Assistido por Computador , Fatores de Tempo , População Branca
12.
Neuroimage ; 44(2): 455-68, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18950718

RESUMO

All sleep stages contain epochs with high-amplitude electrophysiological phasic events, alternating with quieter "core periods." High-amplitude and core state properties cannot be disentangled with PET and fMRI. Here from high temporal resolution magnetoencephalography data, regional changes in neuronal activity were extracted during core periods in different frequency bands for each sleep stage and waking. We found that gamma-band activity increases in precuneus during light sleep (stages 1/2) and in the left dorso-medial prefrontal cortex (L-DMPFC) during deep sleep (stages 3/4). The L-DMPFC activated area expands laterally during rapid eye movement (REM) sleep, into a volume of about 5 cm(3) bounded by regions attributed to Theory of Mind (ToM) and default systems, both involved in introspection. Gamma band activity in this area was higher during REM sleep than other sleep stages and active wakefulness. There is a tantalizing correspondence between increased wide-band activity (dominated by low frequencies) in early non-REM (NREM) sleep stages and increases in gamma-band activity in late NREM and REM periods that we attribute to a lateral disinhibition mechanism. The results provide a description of regional electrophysiological changes in awake state, light and deep sleep, and REM sleep. These changes are most pronounced in the L-DMPFC and the other areas around the dorsal midline that are close to, but do not overlap with areas of the default and ToM systems, suggesting that the DMPFC, particularly in the left hemisphere, plays an important role in late NREM stages, in REM and possibly in dreaming.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Fases do Sono/fisiologia , Adulto , Humanos , Masculino
13.
Hum Brain Mapp ; 30(1): 147-62, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18041740

RESUMO

The luminance contrast of a visual stimulus is known to modulate the response properties of areas V1 and the human MT complex (hMT+), but has not been shown to modulate interactions between these two areas. We examined the direction of information transfer between V1/V2 and hMT+ at different stimulus contrasts by measuring magnetoencephalographic (MEG) responses to moving and stationary stimuli presented centrally or peripherally. To determine the direction of information flow, the different response latencies among stimuli and hemispheres in V1/V2 was compared with those of hMT+. At high contrast, responses to stimulus motion and position began in V1/V2, and were followed in hMT+ with a delay between 34 and 55 ms. However, at low contrast, lateralized responses in hMT+ came first, with those in V1/V2 lagging with a delay of 27 ms. Also, at high contrast, stationary stimuli produced greater responses than motion stimuli in V1/V2, while the reverse was true in hMT+, whose response lagged behind the initial response in V1/V2. The same activation order was found using Mutual Information Analysis of the response variances for each condition. Here, the response variances in hMT+ mimicked and trailed those of V1/V2 at high contrast, whereas the reverse was true at low contrast. Such consistent interactions found using two different methodologies strongly supports a processing link between these two areas. The results also suggest that feedback from hMT+ for low-contrast stimuli compensates for unresolved processing in V1/V2 when the input of a visual image is weak.


Assuntos
Sensibilidades de Contraste/fisiologia , Percepção de Movimento/fisiologia , Lobo Occipital/fisiologia , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adulto , Viés , Mapeamento Encefálico , Campos Eletromagnéticos , Potenciais Evocados Visuais/fisiologia , Retroalimentação/fisiologia , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Testes Neuropsicológicos , Lobo Occipital/anatomia & histologia , Estimulação Luminosa , Tempo de Reação/fisiologia , Córtex Visual/anatomia & histologia
14.
Curr Opin Neurobiol ; 17(2): 161-70, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17379500

RESUMO

Recent studies show that anatomical and functional brain networks exhibit similar small-world properties. However, the networks that are compared often differ in what the nodes represent (e.g. sensors or brain areas), what kind of connectivity is measured, and what temporal and spatial scales are probed. Here, I review studies of large-scale connectivity and recent results from a variety of real-time recording techniques, which together suggest that an adequate description of brain organization requires a hierarchy of networks rather than the single, binary networks that are currently in vogue. Pattern analysis methods now offer a principled way for constructing such network hierarchies. As shown at the end of this review, a correspondence principle can be formulated to guide the interpretation across network levels and to relate nodes to well defined anatomical entities.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Dinâmica não Linear , Animais , Mapeamento Encefálico , Humanos , Modelos Neurológicos , Rede Nervosa/anatomia & histologia , Vias Neurais/anatomia & histologia
15.
Methods Mol Biol ; 489: 167-88, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18839092

RESUMO

Magnetoencephalography (MEG) encompasses a family of non-contact, non-invasive techniques for detecting the magnetic field generated by the electrical activity of the brain, for analyzing this MEG signal and for using the results to study brain function. The overall purpose of MEG is to extract estimates of the spatiotemporal patterns of electrical activity in the brain from the measured magnetic field outside the head. The electrical activity in the brain is a manifestation of collective neuronal activity and, to a large extent, the currency of brain function. The estimates of brain activity derived from MEG can therefore be used to study mechanisms and processes that support normal brain function in humans and help us understand why, when and how they fail.


Assuntos
Magnetoencefalografia , Humanos , Tomografia de Coerência Óptica
16.
Front Neurosci ; 13: 814, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447635

RESUMO

The large multicomponent K-complex (KC) and the rhythmic spindle are the hallmarks of non-rapid eye movement (NREM)-2 sleep stage. We studied with magnetoencephalography (MEG) the progress of light sleep (NREM-1 and NREM-2) and emergence of KCs and spindles. Seven periods of interest (POI) were analyzed: wakefulness, the two quiet "core" periods of light sleep (periods free from any prominent phasic or oscillatory events) and four periods before and during spindles and KCs. For each POI, eight 2-s (1250 time slices) segments were used. We employed magnetic field tomography (MFT) to extract an independent tomographic estimate of brain activity from each MEG data sample. The spectral power was then computed for each voxel in the brain for each segment of each POI. The sets of eight maps from two POIs were contrasted using a voxel-by-voxel t-test. Only increased spectral power was identified in the four key contrasts between POIs before and during spindles and KCs versus the NREM2 core. Common increases were identified for all four subjects, especially within and close to the anterior cingulate cortex (ACC). These common increases were widespread for low frequencies, while for higher frequencies they were focal, confined to specific brain areas. For the pre-KC POI, only one prominent increase was identified, confined to the theta/alpha bands in a small area in the dorsal caudal part of ACC (dcACC). During KCs, the activity in this area grows in intensity and extent (in space and frequency), filling the space between the areas that expanded their low frequency activity (in the delta band) during NREM2 compared to NREM1. Our main finding is that prominent spectral power increases before NREM2 graphoelements are confined to the dcACC, and only for KCs, sharing common features with changes of activity in dcACC of the well-studied error related negativity (ERN). ERN is seen in awake state, in perceptual conflict and situations where there is a difference between expected and actual environmental or internal events. These results suggest that a KC is the sleep side of the awake state ERN, both serving their putative sentinel roles in the frame of the saliency network.

18.
Hum Brain Mapp ; 29(11): 1313-26, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17948884

RESUMO

In normal viewing conditions, many objects are often hidden or occluded by others, therefore restricting the information that enters the eye. One ability that the human visual system has developed to compensate for this visual limitation is to relate the surrounding elements to globally interpret the whole scene. The appearance of illusory figures (IF) based on surrounding elements also relies on this similar function. In the present study, we hypothesized that different mechanisms may be used by the brain to process IF from the center and periphery of the visual field. We compared magnetoencephalographic responses to IFs presented at different parts of the visual field under three task loads. For central presentation, IF specific responses peaked first in V1/V2 (96-101 ms), and then in the lateral occipital complex (LOC; 132-141 ms), independent of task. For peripheral presentation, the relative modulation towards IF was markedly reduced in V1/V2 and LOC while prominent activation peaks now shifted to the Fusiform Gyrus (from 200 ms onwards). Additionally, the type of task influenced processing at early stages beginning in V1/V2 (87 ms). Our results show that retinal eccentricity plays a crucial role in IF processing: figural completion at the center of the visual field is achieved in an 'automatic' and seemingly effortless fashion whereas peripheral stimulus locations necessitate higher-order object completion stages which rely more heavily on attentional demands.


Assuntos
Encéfalo/fisiologia , Ilusões Ópticas/fisiologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Adulto , Humanos , Imageamento por Ressonância Magnética , Magnetocardiografia , Masculino , Pessoa de Meia-Idade
19.
Front Hum Neurosci ; 12: 142, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755332

RESUMO

Neurofeedback has been around for half a century, but despite some promising results it is not yet widely appreciated. Recently, some of the concerns about neurofeedback have been addressed with functional magnetic resonance imaging and magnetoencephalography adding their contributions to the long history of neurofeedback with electroencephalography. Attempts to address other concerns related to methodological issues with new experiments and meta-analysis of earlier studies, have opened up new questions about its efficacy. A key concern about neurofeedback is the missing framework to explain how improvements in very different and apparently unrelated conditions are achieved. Recent advances in neuroscience begin to address this concern. A particularly promising approach is the analysis of resting state of fMRI data, which has revealed robust covariations in brain networks that maintain their integrity in sleep and even anesthesia. Aberrant activity in three brain wide networks (i.e., the default mode, central executive and salience networks) has been associated with a number of psychiatric disorders. Recent publications have also suggested that neurofeedback guides the restoration of "normal" activity in these three networks. Using very recent results from our analysis of whole night MEG sleep data together with key concepts from developmental psychology, cloaked in modern neuroscience terms, a theoretical framework is proposed for a neural representation of the self, located at the core of a double onion-like structure of the default mode network. This framework fits a number of old and recent neuroscientific findings, and unites the way attention and memory operate in awake state and during sleep. In the process, safeguards are uncovered, put in place by evolution, before any interference with the core representation of self can proceed. Within this framework, neurofeedback is seen as set of methods for restoration of aberrant activity in large scale networks. The framework also admits quantitative measures of improvements to be made by personalized neurofeedback protocols. Finally, viewed through the framework developed, neurofeedback's safe nature is revealed while raising some concerns for interventions that attempt to alter the neural self-representation bypassing the safeguards evolution has put in place.

20.
Front Hum Neurosci ; 12: 322, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147649

RESUMO

Electrophysiological and functional neuroimaging findings indicate that the neural mechanisms underlying the processing of emotional dimensions (i.e., valence, arousal) constitute a spatially and temporally distributed emotional network, modulated by the arousal and/or valence of the emotional stimuli. We examined the time course and source distribution of gamma time-locked magnetoencephalographic activity in response to a series of emotional stimuli viewed by healthy adults. We used a beamformer and a sliding window analysis to generate a succession of spatial maps of event-related brain responses across distinct levels of valence (pleasant/unpleasant) and arousal (high/low) in 30-100 Hz. Our results show parallel emotion-related responses along specific temporal windows involving mainly dissociable neural pathways for valence and arousal during emotional picture processing. Pleasant valence was localized in the left inferior frontal gyrus, while unpleasant valence in the right occipital gyrus, the precuneus, and the left caudate nucleus. High arousal was processed by the left orbitofrontal cortex, amygdala, and inferior frontal gyrus, as well as the right middle temporal gyrus, inferior parietal lobule, and occipital gyrus. Pleasant by high arousal interaction was localized in the left inferior and superior frontal gyrus, as well as the right caudate nucleus, putamen, and gyrus rectus. Unpleasant by high arousal interaction was processed by the right superior parietal gyrus. Valence was prioritized (onset at ∼60 ms) to all other effects, while pleasant valence was short lived in comparison to unpleasant valence (offsets at ∼110 and ∼320 ms, respectively). Both arousal and valence × arousal interactions emerged relatively early (onset at ∼150 ms, and ∼170 ms, respectively). Our findings support the notion that brain regions differentiate between valence and arousal, and demonstrate, for the first time, that these brain regions may also respond to distinct combinations of these two dimensions within specific time windows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA