Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 44(23): 8424-42, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446476

RESUMO

This tutorial review considers defect chemistry of TiO2 and its solid solutions as well as defect-related properties associated with solar-to-chemical energy conversion, such as Fermi level, bandgap, charge transport and surface active sites. Defect disorder is discussed in terms of defect reactions and the related charge compensation. Defect equilibria are used in derivation of defect diagrams showing the effect of oxygen activity and temperature on the concentration of both ionic and electronic defects. These defect diagrams may be used for imposition of desired semiconducting properties that are needed to maximize the performance of TiO2-based photoelectrodes for the generation of solar hydrogen fuel using photo electrochemical cells (PECs) and photocatalysts for water purification. The performance of the TiO2-based semiconductors is considered in terms of the key performance-related properties (KPPs) that are defect related. It is shown that defect engineering may be applied for optimization of the KPPs in order to achieve optimum performance.

2.
J Phys Chem A ; 119(17): 4032-40, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25830953

RESUMO

The present work considers the semiconducting properties of In-doped TiO2 in terms of the Jonker formalism applied for both electrical conductivity and thermoelectric power data determined simultaneously in equilibrium with the gas phase of controlled oxygen activity. It is shown that the electrical properties of In-doped TiO2 annealed in oxidizing conditions [p(O2) > 10 Pa] can be described by the Jonker formalism very well. However, annealing of In-doped TiO2 in strongly reducing conditions [p(O2) < 10(-10) Pa], imposed by the gas phase involving hydrogen, results in a deviation of the experimental data from the Jonker's theoretical model derived for the Maxwell-Boltzmann statistics. This departure is considered in terms of the effect of hydrogen on the formation of structural domains, which are expected to be entirely different from those of oxidized TiO2 in terms of its electronic properties. It is argued that In-doped TiO2 annealed in the gas phase involving hydrogen exhibits a high concentration of donor-type ionic defects, which lead to the formation of high concentration of electrons. The related semiconducting properties are inconsistent with the model of classical semiconductor where the electrons are described by the Maxwell-Boltzmann statistics. It is concluded that strong interactions within the electron gas lead, in consequence, to the behavior resembling correlated transport of electrons. The obtained results suggest that indium incorporation into the rutile structure of TiO2 results in the formation of structural properties that exhibit extraordinary charge transport.

3.
ACS Appl Mater Interfaces ; 14(7): 9685-9696, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133137

RESUMO

Emerging and re-emerging infections are a global threat driven by the development of antimicrobial resistance due to overuse of antimicrobial agents and poor infection control practices. Implantable devices are particularly susceptible to such infections due to the formation of microbial biofilms. Furthermore, the introduction of implants into the body often results in inflammation and foreign body reactions. The antimicrobial and anti-inflammatory properties of gallium (Ga) have been recognized but not yet utilized effectively to improve implantable device integration. Furthermore, defensin (De, hBD-1) has potent antimicrobial activity in vivo as part of the innate immune system; however, this has not been demonstrated as successfully when used in vitro. Here, we combined Ga and De to impart antimicrobial activity and anti-inflammatory properties to polymer-based implantable devices. We fabricated polylactic acid films, which were modified using Ga implantation and subsequently functionalized with De. Ga-ion implantation increased surface roughness and increased stiffness. Ga implantation and defensin immobilization both independently and synergistically introduced antimicrobial activity to the surfaces, significantly reducing total live bacterial biomass. We demonstrated, for the first time, that the antimicrobial effects of De were unlocked by its surface immobilization. Ga implantation of the surface also resulted in reduced foreign body giant cell formation and expression of proinflammatory cytokine IL-1ß. Cumulatively, the treated surfaces were able to kill bacteria and reduce inflammation in comparison to the untreated control. These innovative surfaces have the potential to prevent biofilm formation without inducing cellular toxicity or inflammation, which is highly desired for implantable device integration.


Assuntos
Anti-Infecciosos , Gálio , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Biofilmes , Materiais Revestidos Biocompatíveis/farmacologia , Defensinas/farmacologia , Gálio/farmacologia , Propriedades de Superfície
4.
Front Chem ; 9: 706736, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858941

RESUMO

We have examined the irradiation response of a titanate and zirconate pyrochlore-both of which are well studied in the literature individually-in an attempt to define the appearance of defect fluorite in zirconate pyrochlores. To our knowledge this study is unique in that it attempts to discover the mechanism of formation by a comparison of the different systems exposed to the same conditions and then examined via a range of techniques that cover a wide length scale. The conditions of approximately 1 displacement per atom via He2+ ions were used to simulate long term waste storage conditions as outlined by previous results from Ewing in a large enough sample volume to allow for neutron diffraction, as not attempted previously. The titanate sample, used as a baseline comparison since it readily becomes amorphous under these conditions behaved as expected. In contrast, the zirconate sample accumulates tensile stress in the absence of detectable strain. We propose this is analogous to the lanthanide zirconate pyrochlores examined by Simeone et al. where they reported the appearance of defect fluorite diffraction patterns due to a reduction in grain size. Radiation damage and stress results in the grains breaking into even smaller crystallites, thus creating even smaller coherent diffraction domains. An (ErNd)2(ZrTi)2O7 pyrochlore was synthesized to examine which mechanism might dominate, amorphization or stress/strain build up. Although strain was detected in the pristine sample via Synchrotron X-ray diffraction it was not of sufficient quality to perform a full analysis on.

5.
Front Chem ; 7: 13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805329

RESUMO

In this study, we present a new concept based on the steady-state, laser-induced photoluminescence of Nd3+, which aims at a direct determination of the amorphous fraction f a in monazite- and xenotime-type orthophosphates on a micrometer scale. Polycrystalline, cold-pressed, sintered LaPO4, and YPO4 ceramics were exposed to quadruple Au-ion irradiation with ion energies 35 MeV (50% of the respective total fluence), 22 MeV (21%), 14 MeV (16%), and 7 MeV (13%). Total irradiation fluences were varied in the range 1.6 × 1013-6.5 × 1013 ions/cm2. Ion-irradiation resulted in amorphization and damage accumulation unto a depth of ~5 µm below the irradiated surfaces. The amorphous fraction created was quantified by means of surface-sensitive grazing-incidence X-ray diffraction and photoluminescence spectroscopy using state-of-the-art confocal spectrometers with spatial resolution in the µm range. Monazite-type LaPO4 was found to be more susceptible to ion-irradiation induced damage accumulation than xenotime-type YPO4. Transmission electron microscopy of lamella cut from irradiated surfaces with the focused-ion beam technique confirmed damage depth-profiles with those obtained from PL hyperspectral mapping. Potential analytical advantages that arise from an improved characterization and quantification of radiation damage (i.e., f a) on the µm-scale are discussed.

6.
J Phys Condens Matter ; 30(31): 315804, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-29964268

RESUMO

We report on artificial exchange bias created in a continuous epitaxial FePt3 film by introducing chemical disorder using a He+ beam, which features tailorable exchange bias strength through post-irradiation annealing. By design, the ferromagnetic (FM)/antiferromagnetic (AF) heterostructure exhibits stratified degrees of chemical order; however, the chemical composition and stoichiometry are invariant throughout the film volume. This uniquely allows for a consideration purely of the magnetic exchange across the FM/AF interface without the added hindrance of structural boundary parameters which inherently affect exchange bias quality. Annealing at 840 K results in the strongest exchange biased system, which displays a cross-sectional morphology of fine (<10 nm) domain structure composed of both of chemically ordered and chemically disordered domains. A magnetic model developed from fitting the characteristic polarised neutron reflectometry spectral features reveals that dual interactions can be attributed to the observed exchange bias: magnetic coupling at the FM/AF interface and also between neighbouring FM (chemically disordered) and AF (chemically ordered) domains within the nominally FM layer. Our results indicate that exchange bias is hindered at interfaces which are both chemically and magnetically perfect, while annealing can be used to balance the volume proportions of interfacial FM and AF domains to enhance the magnetic interface roughness for customisable exchange bias in mono-stoichiometric FM/AF heterostructures crafted by ion beams.

7.
ACS Appl Mater Interfaces ; 10(18): 16216-16224, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29701447

RESUMO

Using ion beams to locally modify material properties and subsequently drive magnetic phase transitions is rapidly gaining momentum as the technique of choice for the fabrication of magnetic nanoelements. This is because the method provides the capability to engineer in three dimensions on the nanometer length scale. This will be an important consideration for several emerging magnetic technologies (e.g., spintronic devices and racetrack and random-access memories) where device functionality will hinge on the spatial definition of the incorporated magnetic nanoelements. In this work, the fundamental sharpness of a magnetic interface formed by nanomachining FePt3 films using He+ irradiation is investigated. Through careful selection of the irradiating ion energy and fluence, room-temperature ferromagnetism is locally induced into a fractional volume of a paramagnetic (PM) FePt3 film by modifying the chemical order parameter. A combination of transmission electron microscopy, magnetometry, and polarized neutron reflectometry measurements demonstrates that the interface over which the PM-to-ferromagnetic modulation occurs in this model system is confined to a few atomic monolayers only, while the structural boundary transition is less well-defined. Using complementary density functional theory, the mechanism for the ion-beam-induced magnetic transition is elucidated and shown to be caused by an intermixing of Fe and Pt atoms in antisite defects above a threshold density.

8.
Biomaterials ; 28(9): 1620-8, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17196649

RESUMO

Recent trials on diamond-like carbon (DLC) coated medical devices have indicated promise for blood interfacing applications. The literature is sparse regarding structural and compositional effects of DLC on cellular response. An important goal in optimizing blood-interfacing implants is minimal macrophage attachment, and maximal albumin:fibrinogen adsorption ratio. DLC coatings deposited by PACVD and FAD, were analysed with respect to sp3 content (EELS), hydrogen content (ERDA), surface composition (XPS), surface roughness (AFM), surface energy, albumin:fibrinogen adsorption ratio, and macrophage viability and attachment. We found that increasing surface roughness and surface energy enhanced the macrophage viability and the albumin:fibrinogen adsorption ratio. We also found that the higher the hydrogen content for a-C:Hs deposited by PACVD, the lower the albumin:fibrinogen adsorption ratio, and macrophage attachment. This suggests that hydrogen content may be an important factor for influencing the biological response of DLC surfaces. Macrophage cells spread well on all DLC surfaces, and the surface results indicated the non-toxic nature of the surfaces on the cells at the time points tested.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Diamante/química , Diamante/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Teste de Materiais , Camundongos , Propriedades de Superfície
9.
ACS Appl Mater Interfaces ; 9(40): 35010-35017, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28937742

RESUMO

Photocatalytic conversion of carbon dioxide (CO2) to useful products has potential to address the adverse environmental impact of global warming. However, most photocatalysts used to date exhibit limited catalytic performance, due to poor CO2 adsorption capacity, inability to efficiently generate photoexcited electrons, and/or poor transfer of the photogenerated electrons to CO2 molecules adsorbed on the catalyst surface. The integration of inorganic semiconductor nanoparticles across metal organic framework (MOF) materials has potential to yield new hybrid materials, combining the high CO2 adsorption capacity of MOF and the ability of the semiconductor nanoparticles to generate photoexcited electrons. Herein, controlled encapsulation of TiO2 and Cu-TiO2 nanoparticles within zeolitic imidazolate framework (ZIF-8) membranes was successfully accomplished, using rapid thermal deposition (RTD), and their photocatalytic efficiency toward CO2 conversion was investigated under UV irradiation. Methanol and carbon monoxide (CO) were found to be the only products of the CO2 reduction, with yields strongly dependent upon the content and composition of the dopant semiconductor particles. CuTiO2 nanoparticle doped membranes exhibited the best photocatalytic performance, with 7 µg of the semiconductor nanoparticle enhancing CO yield of the pristine ZIF-8 membrane by 233%, and methanol yield by 70%. This work opens new routes for the fabrication of hybrid membranes containing inorganic nanoparticles and MOFs, with potential application not only in catalysis but also in electrochemical, separation, and sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA