Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(1): 64-74, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36575153

RESUMO

The shedding kinematics of water droplets in a condensation environment when exposed to aerodynamic forces in microgravity was studied. Understanding the shedding of droplets from a surface is a critical part of the dropwise condensation process for improving heat transfer. Because gravity as a droplet removal technique is not available in space, the use of airflow to shed droplets is considered for condensing heat exchangers in environmental control and life support systems. Surface coatings affect drop adhesion, and here, four different surfaces (PMMA, PS, PTFE, and SHS) and various droplet sizes (80, 60, and 40 µL) were used to understand the above phenomenon. It was found that the critical velocity to shed a droplet in microgravity was up to 8% lower than that in normal gravity. Also, the effect of the droplet size was investigated for both microgravity and normal gravity; the shedding velocity was lower for microgravity, and it decreased as droplet size increased. Increasing the hydrophobicity of the coating decreased the critical velocity for shedding. Finally, the droplet was found to detach from superhydrophobic surfaces in microgravity. The detachment of droplets from the substrate will hamper the condensation process that can produce a larger fresh area; also, detachment of droplets and entrainment in airflow counter the concept of removing moisture from the air in a dehumidification process.

2.
Langmuir ; 31(36): 9833-44, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26274810

RESUMO

The aim of this work is to understand the changes in the observed phenomena during particle-laden drop impact. The impact of millimeter-size drops was investigated onto hydrophilic (glass) and hydrophobic (polycarbonate) substrates. The drops were dispersions of water and spherical and nearly iso-dense hydrophobic particles with diameters of 200 and 500 µm. The impact was studied by side and bottom view images in the range 150 ≤ We ≤ 750 and 7100 ≤ Re ≤ 16400. The particles suppressed the appearance of singular jetting and drop partial rebound but promoted splashing, receding breakup, and rupture. The drops with 200 µm particles spread in two phases: fast and slow, caused by inertial and capillary forces, respectively. Also, the increase in volume fraction of 200 µm particle led to a linear decrease in the maximum spreading factor caused by the inertia force on both hydrophilic and hydrophobic substrates. The explanation of this reduction was argued to be the result of energy dissipation through frictional losses between particles and the substrate.

3.
Micromachines (Basel) ; 15(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38398926

RESUMO

This study details the development and validation of a graphene-based ice detection system, designed to enhance flight safety by monitoring ice accumulation on aircraft surfaces. The system employs a semiconductive polymer (PEDOT:PSS) with graphene electrodes, interpreting resistance changes to detect water impact and ice formation in real time. The sensor's performance was rigorously tested in a wind tunnel under various temperature and airflow conditions, focusing on resistance signal dependency on air temperature and phase change. The results demonstrate the sensor's ability to distinguish water droplet impacts from ice formation, with a notable correlation between resistance signal amplitude and water droplet impacts leading to ice accretion. Further analysis shows a significant relationship between air temperature and the resistance signal amplitude, particularly at lower temperatures beneficial to ice formation. This underlines the sensor's precision in varied atmospheric conditions. The system's compact design and accurate detection highlight its potential for improving aircraft ice monitoring, offering a path toward a robust and reliable ice detection system.

4.
Micromachines (Basel) ; 15(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675315

RESUMO

In the context of improving aircraft safety, this work focuses on creating and testing a graphene-based ice detection system in an environmental chamber. This research is driven by the need for more accurate and efficient ice detection methods, which are crucial in mitigating in-flight icing hazards. The methodology employed involves testing flat graphene-based sensors in a controlled environment, simulating a variety of climatic conditions that could be experienced in an aircraft during its entire flight. The environmental chamber enabled precise manipulation of temperature and humidity levels, thereby providing a realistic and comprehensive test bed for sensor performance evaluation. The results were significant, revealing the graphene sensors' heightened sensitivity and rapid response to the subtle changes in environmental conditions, especially the critical phase transition from water to ice. This sensitivity is the key to detecting ice formation at its onset, a critical requirement for aviation safety. The study concludes that graphene-based sensors tested under varied and controlled atmospheric conditions exhibit a remarkable potential to enhance ice detection systems for aircraft. Their lightweight, efficient, and highly responsive nature makes them a superior alternative to traditional ice detection technologies, paving the way for more advanced and reliable aircraft safety solutions.

5.
NPJ Microgravity ; 10(1): 50, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693246

RESUMO

Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.

6.
NPJ Microgravity ; 10(1): 16, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341423

RESUMO

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.

7.
Materials (Basel) ; 16(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687489

RESUMO

Recently, the goal of space exploration has shifted from the incognito of the solar system to the Moon. Concepts like human permanence on the Moon and thermal protective structures made with ISRU (in situ resource utilization) of raw materials have started to be implemented. By limiting the need to launch supplies from the Earth, the paradigm of spaceflight is changed, privileging the vanguard of the utilisation of resources in situ. Still, the main challenges of surviving the radiation dose and the cryogenic temperatures of the lunar night remain. Recent studies have demonstrated how innovative composite materials can help reduce the temperature stress on exploration vehicles. This research presents the material properties of aerogel insulating materials combined with LHS (lunar highlands simulant) regolith obtained by freeze frying. Organic-based aerogels with different percentages of LHS have been analysed in terms of material, morphology, and thermal properties.

8.
NPJ Microgravity ; 9(1): 84, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865644

RESUMO

The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: "How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?" This is one of the five major scientific issues of the ESA roadmap "Biology in Space and Analogue Environments". Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects.

9.
Front Bioeng Biotechnol ; 10: 806362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646874

RESUMO

Wound management in Space is an important factor to be considered in future Human Space Exploration. It demands the development of reliable wound monitoring systems that will facilitate the assessment and proper care of wounds in isolated environments, such as Space. One possible system could be developed using liquid crystal films, which have been a promising solution for real-time in-situ temperature monitoring in healthcare, but they are not yet implemented in clinical practice. To progress in the latter, the goal of this study is twofold. First, it provides a full characterization of a sensing element composed of thermotropic liquid crystals arrays embedded between two elastomer layers, and second, it discusses how such a system compares against non-local infrared measurements. The sensing element evaluated here has an operating temperature range of 34-38°C, and a quick response time of approximately 0.25 s. The temperature distribution of surfaces obtained using this system was compared to the one obtained using the infrared thermography, a technique commonly used to measure temperature distributions at the wound site. This comparison was done on a mimicked wound, and results indicate that the proposed sensing element can reproduce the temperature distributions, similar to the ones obtained using infrared imaging. Although there is a long way to go before implementing the liquid crystal sensing element into clinical practice, the results of this work demonstrate that such sensors can be suitable for future wound monitoring systems.

10.
J Colloid Interface Sci ; 490: 108-118, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27870950

RESUMO

The splat morphology after the impact of suspension drops on hydrophilic (glass) and hydrophobic (polycarbonate) substrates was investigated. The suspensions were mixtures of water and spherical hydrophobic particles with diameter of 200µm or 500µm. The impact was studied by side, bottom and angled view images. At Reynolds and Weber numbers in the range 150⩽We⩽750 and 7100⩽Re⩽16,400, the particles distributed in a monolayer on the hydrophilic substrates. It was found that the 200µm particles self-arranged as rings or disks on the hydrophilic substrates. On hydrophobic substrates, many particles were at the air-water interface and 200µm formed a crown-like structure. The current study for impact of particle-laden drops shows that the morphology of splats depends on the substrate wettability, the particle size and impact velocity. We developed correlations for the inner and outer diameter of the particle distribution on the hydrophilic substrates, and for the crown height on hydrophobic substrates. The proposed correlations capture the character of the particle distributions after drop impact that depends on particle volume fraction, the wettability of both particles and the substrate, and the dimensionless numbers such as Reynolds and Weber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA