Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biol ; 159(5): 807-19, 2002 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-12473689

RESUMO

Aphysical and functional link between the nuclear pore complex (NPC) and the spindle checkpoint machinery has been established in the yeast Saccharomyces cerevisiae. We show that two proteins required for the execution of the spindle checkpoint, Mad1p and Mad2p, reside predominantly at the NPC throughout the cell cycle. There they are associated with a subcomplex of nucleoporins containing Nup53p, Nup170p, and Nup157p. The association of the Mad1p-Mad2p complex with the NPC requires Mad1p and is mediated in part by Nup53p. On activation of the spindle checkpoint, we detect changes in the interactions between these proteins, including the release of Mad2p (but not Mad1p) from the NPC and the accumulation of Mad2p at kinetochores. Accompanying these events is the Nup53p-dependent hyperphosphorylation of Mad1p. On the basis of these results and genetic analysis of double mutants, we propose a model in which Mad1p bound to a Nup53p-containing complex sequesters Mad2p at the NPC until its release by activation of the spindle checkpoint. Furthermore, we show that the association of Mad1p with the NPC is not passive and that it plays a role in nuclear transport.


Assuntos
Proteínas de Transporte , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fuso Acromático/fisiologia , Antimetabólitos/farmacologia , Benomilo/farmacologia , Transporte Biológico Ativo , Proteínas de Ligação ao Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular , Núcleo Celular/genética , Núcleo Celular/fisiologia , Desoxiglucose/farmacologia , Proteínas Fúngicas/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genes Reporter , Cinetocoros/fisiologia , Proteínas Mad2 , Fator de Acasalamento , Mitose , Modelos Genéticos , Nocodazol/farmacologia , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Peptídeos/farmacologia , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Repressoras/efeitos dos fármacos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Azida Sódica/farmacologia
2.
Aging (Albany NY) ; 8(10): 2568-2589, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27783562

RESUMO

We recently selected 3 long-lived mutant strains of Saccharomyces cerevisiae by a lasting exposure to exogenous lithocholic acid. Each mutant strain can maintain the extended chronological lifespan after numerous passages in medium without lithocholic acid. In this study, we used these long-lived yeast mutants for empirical verification of evolutionary theories of aging. We provide evidence that the dominant polygenic trait extending longevity of each of these mutants 1) does not affect such key features of early-life fitness as the exponential growth rate, efficacy of post-exponential growth and fecundity; and 2) enhances such features of early-life fitness as susceptibility to chronic exogenous stresses, and the resistance to apoptotic and liponecrotic forms of programmed cell death. These findings validate evolutionary theories of programmed aging. We also demonstrate that under laboratory conditions that imitate the process of natural selection within an ecosystem, each of these long-lived mutant strains is forced out of the ecosystem by the parental wild-type strain exhibiting shorter lifespan. We therefore concluded that yeast cells have evolved some mechanisms for limiting their lifespan upon reaching a certain chronological age. These mechanisms drive the evolution of yeast longevity towards maintaining a finite yeast chronological lifespan within ecosystems.


Assuntos
Envelhecimento , Evolução Biológica , Ácido Litocólico/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Genótipo , Mutação , Organismos Geneticamente Modificados , Saccharomyces cerevisiae/genética
3.
Aging (Albany NY) ; 5(7): 551-74, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23924582

RESUMO

Our studies revealed that lithocholic acid (LCA), a bile acid, is a potent anti-aging natural compound that in yeast cultured under longevity-extending caloric restriction (CR) conditions acts in synergy with CR to enable a significant further increase in chronological lifespan. Here, we investigate a mechanism underlying this robust longevity-extending effect of LCA under CR. We found that exogenously added LCA enters yeast cells, is sorted to mitochondria, resides mainly in the inner mitochondrial membrane, and also associates with the outer mitochondrial membrane. LCA elicits an age-related remodeling of glycerophospholipid synthesis and movement within both mitochondrial membranes, thereby causing substantial changes in mitochondrial membrane lipidome and triggering major changes in mitochondrial size, number and morphology. In synergy, these changes in the membrane lipidome and morphology of mitochondria alter the age-related chronology of mitochondrial respiration, membrane potential, ATP synthesis and reactive oxygen species homeostasis. The LCA-driven alterations in the age-related dynamics of these vital mitochondrial processes extend yeast longevity. In sum, our findings suggest a mechanism underlying the ability of LCA to delay chronological aging in yeast by accumulating in both mitochondrial membranes and altering their glycerophospholipid compositions. We concluded that mitochondrial membrane lipidome plays an essential role in defining yeast longevity.


Assuntos
Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Ácido Litocólico/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos
4.
Aging (Albany NY) ; 5(4): 234-69, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23553280

RESUMO

Macromitophagy controls mitochondrial quality and quantity. It involves the sequestration of dysfunctional or excessive mitochondria within double-membrane autophagosomes, which then fuse with the vacuole/lysosome to deliver these mitochondria for degradation. To investigate a physiological role of macromitophagy in yeast, we examined how theatg32Δ-dependent mutational block of this process influences the chronological lifespan of cells grown in a nutrient-rich medium containing low (0.2%) concentration of glucose. Under these longevity-extending conditions of caloric restriction (CR) yeast cells are not starving. We also assessed a role of macromitophagy in lifespan extension by lithocholic acid (LCA), a bile acid that prolongs yeast longevity under CR conditions. Our findings imply that macromitophagy is a longevity assurance process underlying the synergistic beneficial effects of CR and LCA on yeast lifespan. Our analysis of how the atg32Δ mutation influences mitochondrial morphology, composition and function revealed that macromitophagy is required to maintain a network of healthy mitochondria. Our comparative analysis of the membrane lipidomes of organelles purified from wild-type and atg32Δ cells revealed that macromitophagy is required for maintaining cellular lipid homeostasis. We concluded that macromitophagy defines yeast longevity by modulating vital cellular processes inside and outside of mitochondria.


Assuntos
Meios de Cultura/farmacologia , Homeostase/fisiologia , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias/fisiologia , Saccharomyces cerevisiae/metabolismo , Animais , Regulação Fúngica da Expressão Gênica/fisiologia , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Fatores de Tempo
6.
PLoS Genet ; 1(1): 36-57, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16103911

RESUMO

Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications.

7.
Eukaryot Cell ; 3(5): 1272-86, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15470256

RESUMO

The molecular motor myosin I is required for hyphal growth in the pathogenic yeast Candida albicans. Specific myosin I functions were investigated by a deletion analysis of five neck and tail regions. Hyphal formation requires both the TH1 region and the IQ motifs. The TH2 region is important for optimal hyphal growth. All of the regions, except for the SH3 and acidic (A) regions that were examined individually, were required for the localization of myosin I at the hyphal tip. Similarly, all of the domains were required for the association of myosin I with pelletable actin-bound complexes. Moreover, the hyphal tip localization of cortical actin patches, identified by both rhodamine-phalloidin staining and Arp3-green fluorescent protein signals, was dependent on myosin I. Double deletion of the A and SH3 domains depolarized the distribution of the cortical actin patches without affecting the ability of the mutant to form hyphae, suggesting that myosin I has distinct functions in these processes. Among the six myosin I tail domain mutants, the ability to form hyphae was strictly correlated with endocytosis. We propose that the uptake of cell wall remodeling enzymes and excess plasma membrane is critical for hyphal formation.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Miosina Tipo I/química , Miosina Tipo I/metabolismo , Actinas/genética , Actinas/metabolismo , Motivos de Aminoácidos , Sequência de Bases , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Parede Celular/metabolismo , DNA Fúngico/genética , Endocitose/genética , Endocitose/fisiologia , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mutação , Miosina Tipo I/genética , Fases de Leitura Aberta , Fenótipo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência
8.
Eukaryot Cell ; 2(5): 949-61, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14555477

RESUMO

The Ste50 protein of Saccharomyces cerevisiae is a regulator of the Ste11p protein kinase. Ste11p is a member of the MAP3K (or MEKK) family, which is conserved from yeast to mammals. Ste50p is involved in all the signaling pathways that require Ste11p function, yet little is known about the regulation of Ste50p itself. Here, we show that Ste50p is phosphorylated on multiple serine/threonine residues in vivo. Threonine 42 (T42) is phosphorylated both in vivo and in vitro, and the protein kinase responsible has been identified as casein kinase I. Replacement of T42 with alanine (T42A) compromises Ste50p function. This mutation abolishes the ability of overexpressed Ste50p to suppress either the mating defect of a ste20 ste50 deletion mutant or the mating defect of a strain with a Ste11p deleted from its sterile-alpha motif domain. Replacement of T42 with a phosphorylation-mimetic aspartic acid residue (T42D) permits wild-type function in all assays of Ste50p function. These results suggest that phosphorylation of T42 of Ste50p is required for proper signaling in the mating response. However, this phosphorylation does not seem to have a detectable role in modulating the high-osmolarity glycerol synthesis pathway.


Assuntos
Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Caseína Quinases , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intracelular , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/fisiologia , Dados de Sequência Molecular , Fosforilação , Regiões Promotoras Genéticas/genética , Proteínas Quinases/genética , Precursores de Proteínas/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/farmacologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Serina/metabolismo , Transdução de Sinais , Sorbitol/farmacologia , Frações Subcelulares/química , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA