Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 331, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820810

RESUMO

BACKGROUND: Cotton production is adversely effected by drought stress. It is exposed to drought stress at various critical growth stages grown under a water scarcity environment. Roots are the sensors of plants; they detect osmotic stress under drought stress and play an important role in plant drought tolerance mechanisms. The seedling stage is very sensitive to drought stress, and it needed to explore the methods and plant characteristics that contribute to drought tolerance in cotton. RESULTS: Initially, seedlings of 18 genotypes from three Gossypium species: G. hirsutum, G. barbadense, and G. arboreum, were evaluated for various seedling traits under control (NS) and drought stress (DS). Afterward, six genotypes, including two of each species, one tolerant and one susceptible, were identified based on the cumulative drought sensitivity response index (CDSRI). Finally, growth rates (GR) were examined for shoot and root growth parameters under control and DS in experimental hydroponic conditions. A significant variation of drought stress responses was observed across tested genotypes and species. CDSRI allowed here to identify the drought-sensitive and drought-resistant cultivar of each investigated species. Association among root and shoots growth traits disclosed influential effects of enduring the growth under DS. The traits including root length, volume, and root number were the best indicators with significantly higher differential responses in the tolerant genotypes. These root growth traits, coupled with the accumulation of photosynthates and proline, were also the key indicators of the resistance to drought stress. CONCLUSION: Tolerant genotypes have advanced growth rates and the capacity to cop with drought stress by encouraging characteristics, including root differential growth traits coupled with physiological traits such as chlorophyll and proline contents. Tolerant and elite genotypes of G. hirsutum were more tolerant of drought stress than obsolete genotypes of G. barbadense and G. arboreum. Identified genotypes have a strong genetic basis of drought tolerance, which can be used in cotton breeding programs.


Assuntos
Gossypium , Plântula , Secas , Gossypium/genética , Melhoramento Vegetal , Prolina , Plântula/genética
2.
Plant Commun ; 5(7): 100885, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38504521

RESUMO

Inorganic phosphorus (Pi) deficiency significantly impacts plant growth, development, and photosynthetic efficiency. This study evaluated 206 rice accessions from a MiniCore population under both Pi-sufficient (Pi+) and Pi-starvation (Pi-) conditions in the field to assess photosynthetic phosphorus use efficiency (PPUE), defined as the ratio of AsatPi- to AsatPi+. A genome-wide association study and differential gene expression analyses identified an acid phosphatase gene (ACP2) that responds strongly to phosphate availability. Overexpression and knockout of ACP2 led to a 67% increase and 32% decrease in PPUE, respectively, compared with wild type. Introduction of an elite allele A, by substituting the v5 SNP G with A, resulted in an 18% increase in PPUE in gene-edited ACP2 rice lines. The phosphate-responsive gene PHR2 was found to transcriptionally activate ACP2 in parallel with PHR2 overexpression, resulting in an 11% increase in PPUE. Biochemical assays indicated that ACP2 primarily catalyzes the hydrolysis of phosphoethanolamine and phospho-L-serine. In addition, serine levels increased significantly in the ACP2v8G-overexpression line, along with a concomitant decrease in the expression of all nine genes involved in the photorespiratory pathway. Application of serine enhanced PPUE and reduced photorespiration rates in ACP2 mutants under Pi-starvation conditions. We deduce that ACP2 plays a crucial role in promoting photosynthesis adaptation to Pi starvation by regulating serine metabolism in rice.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Fosfatos , Fotossíntese , Serina , Oryza/genética , Oryza/metabolismo , Fotossíntese/genética , Fosfatos/metabolismo , Fosfatos/deficiência , Serina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo
3.
Front Genet ; 13: 851343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360847

RESUMO

Growth-regulating factors-interacting factors (GIFs) are a type of transcription co-activators in plants, playing crucial roles in plants' growth, development, and stress adaptation. Here, a total of 35 GIF genes were identified and clustered into two groups by phylogenetic analysis in four cotton genus. The gene structure and conserved domain analysis proved the conservative characteristics of GIF genes in cotton. The function of GIF genes was evaluated in two cotton accessions, Ji A-1-7 (33xi) and King, which have larger and smaller lateral root numbers, respectively. The results showed that the expression of GhGIF4 in Ji A-1-7 (33xi) was higher than that in King. The enzyme activity and microstructure assay showed a higher POD activity, lower MDA content, and more giant cells of the lateral root emergence part phenotype in Ji A-1-7 (33xi) than in King. A mild waterlogging assay showed the GIF genes were down-regulated in the waterlogged seedling. Further confirmation of the suppression of GhGIF4 in cotton plants further confirmed that GhGIF4 could reduce the lateral root numbers in cotton. This study could provide a basis for future studies of the role of GIF genes in upland cotton.

4.
Front Robot AI ; 8: 644532, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222348

RESUMO

Collaborative robots promise to add flexibility to production cells thanks to the fact that they can work not only close to humans but also with humans. The possibility of a direct physical interaction between humans and robots allows to perform operations that were inconceivable with industrial robots. Collaborative soft grippers have been recently introduced to extend this possibility beyond the robot end-effector, making humans able to directly act on robotic hands. In this work, we propose to exploit collaborative grippers in a novel paradigm in which these devices can be easily attached and detached from the robot arm and used also independently from it. This is possible only with self-powered hands, that are still quite uncommon in the market. In the presented paradigm not only hands can be attached/detached to/from the robot end-effector as if they were simple tools, but they can also remain active and fully functional after detachment. This ensures all the advantages brought in by tool changers, that allow for quick and possibly automatic tool exchange at the robot end-effector, but also gives the possibility of using the hand capabilities and degrees of freedom without the need of an arm or of external power supplies. In this paper, the concept of detachable robotic grippers is introduced and demonstrated through two illustrative tasks conducted with a new tool changer designed for collaborative grippers. The novel tool changer embeds electromagnets that are used to add safety during attach/detach operations. The activation of the electromagnets is controlled through a wearable interface capable of providing tactile feedback. The usability of the system is confirmed by the evaluations of 12 users.

5.
ACS Nano ; 15(2): 3079-3097, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33464053

RESUMO

The desire for all-organic-composed nanoparticles (NPs) of considerable biocompatibility to simultaneously diagnose and treat cancer is undeniably interminable. Heretofore, metal-based agents dominate the landscape of available magnetic resonance imaging (MRI) contrast agents and photothermal therapeutic agents, but with associated metal-specific downsides. Here, an all-organic metal-free nanoprobe, whose appreciable biocompatibility is synergistically contributed by its tetra-organo-components, is developed as a viable alternative to metal-based probes for MRI-guided tumor-targeted photothermal therapy (PTT). This rationally entails a glycol chitosan (GC)-linked polypyrrole (PP) nanoscaffold that provides abundant primary and secondary amino groups for amidation with the carboxyl groups in a nitroxide radical (TEMPO) and folic acid (FA), to obtain GC-PP@TEMPO-FA NPs. Advantageously, the appreciably benign GC-PP@TEMPO-FA features high nitroxide loading (r1 = 1.58 mM-1 s-1) and in vivo nitroxide-reduction resistance, prolonged nitroxide-systemic circulation times, appreciable water dispersibility, potential photodynamic therapeutic and electron paramagnetic resonance imaging capabilities, considerable biocompatibility, and ultimately achieves a 17 h commensurate MRI contrast enhancement. Moreover, its GC component conveys a plethora of PP to tumor sites, where FA-mediated tumor targeting enables substantial NP accumulation with consequential near-complete tumor regression within 16 days in an MRI-guided PTT. The present work therefore promotes the engineering of organic-based metal-free biocompatible NPs in synergism, in furtherance of tumor-targeted image-guided therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Óxidos de Nitrogênio , Fototerapia , Polímeros , Pirróis , Nanomedicina Teranóstica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA