Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(4): 2074-2087, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38111288

RESUMO

In search of materials with superior capability of light-to-heat (photothermal) conversion, biocompatibility, and confinement of active photothermal materials within the cells, novel magnetic MXene-based nanocomposites are found to possess all of these criteria. The CoF@Ti3C2 composite is fabricated by a simple two-step method, including an exfoliation strategy followed by sonochemical method. MXene composite has been modified with polyvinylpyrrolidone (PVP) to improve the stability in physiological conditions. The synthesized composite was characterized with multiple analytical tools. In vitro photothermal conversion efficiency of composite was determined by the time constant method and achieved η = 34.2% with an NIR 808 nm laser. In vitro, cytotoxicity studies conducted on human malignant melanoma (Ht144) and cells validated the photothermal property of the CoF@Ti3C2-PVP composite in the presence of an NIR laser (808 nm, 1.0 W cm-2), with significantly increased cytotoxicity. Calculated IC50 values were 86 µg/mL with laser, compared to 226 µg/mL without the presence of NIR laser. Microscopic results demonstrated increased apoptosis in the presence of NIR laser. Additionally, hemolysis assay confirmed biocompatibility of CoF@Ti3C2-PVP composite for intravenous applications at the IC50 concentration. The research described in this work expands the potential applications of MXene-based nanoplatforms in the biomedical field, particularly in photothermal therapy (PTT). Furthermore, the addition of cobalt ferrite serves as a magnetic nanocomposite, which eventually helps to confine therapeutic photothermal materials inside the cells, provides enhanced photothermal conversion efficiency, and creates externally controlled theranostic nanoplatforms for cancer therapy.


Assuntos
Compostos Férricos , Nitritos , Titânio , Elementos de Transição , Humanos , Titânio/química , Compostos Férricos/farmacologia , Cobalto/farmacologia , Povidona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA