Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Malar J ; 23(1): 252, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39175014

RESUMO

BACKGROUND: Indoor residual spraying (IRS) is one of the most effective malaria control tools. However, its application has become limited to specific contexts due to the increased costs of IRS products and implementation programmes. Selective spraying-selective spray targeted to particular areas/surfaces of dwellings-has been proposed to maintain the malaria control and resistance-management benefits of IRS while decreasing the costs of the intervention. METHODS: A literature search was conducted to find (1) studies that assessed the resting behaviour of Anopheles mosquitoes and (2) studies that evaluated the impact of selective spraying on entomological and malaria outcomes. Additional articles were identified through hand searches of all references cited in articles identified through the initial search. A cost model was developed from PMI VectorLink IRS country programmes, and comparative cost analysis reports to describe the overall cost benefits of selective IRS. RESULTS: In some studies, there appeared to be a clear resting preference for certain Anopheles species in terms of the height at which they rested. However, for other species, and particularly the major African malaria vectors, a clear resting pattern was not detected. Furthermore, resting behaviour was not measured in a standardized way. For the selective spray studies that were assessed, there was a wide range of spray configurations, which complicates the comparison of methods. Many of these spray techniques were effective and resulted in reported 25-68% cost savings and reduced use of insecticide. The reported cost savings in the literature do not always consider all of the IRS implementation costs. Using the IRS cost model, these savings ranged from 17 to 29% for programs that targeted Anopheles spp. and 18-41% for programmes that targeted Aedes aegypti. CONCLUSIONS: Resting behaviour is generally measured in a simplistic way; noting the resting spot of mosquitoes in the morning. This is likely an oversimplification, and there is a need for better monitoring of resting mosquitoes. This may improve the target surface for selective spray techniques, which could reduce the cost of IRS while maintaining its effectiveness. Reporting of cost savings should be calculated considering the entire implementation costs, and a cost model was provided for future calculations.


Assuntos
Anopheles , Inseticidas , Malária , Controle de Mosquitos , Controle de Mosquitos/métodos , Controle de Mosquitos/economia , Animais , Malária/prevenção & controle , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Inseticidas/administração & dosagem , Inseticidas/economia , Humanos , Mosquitos Vetores/efeitos dos fármacos
2.
Malar J ; 22(1): 218, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501142

RESUMO

BACKGROUND: Malaria, transmitted by the bite of infective female Anopheles mosquitoes, remains a global public health problem. The presence of invasive Anopheles stephensi, capable of transmitting Plasmodium vivax and Plasmodium falciparum, was first reported in Ethiopia in 2016. The ecology of this mosquito species differs from that of Anopheles arabiensis, the primary malaria vector in Ethiopia. This study aimed to evaluate the efficacy of selected insecticides, which are used in indoor residual spraying (IRS) and selected long-lasting insecticidal nets (LLINs) for malaria vector control against adult An. stephensi. METHODS: Anopheles stephensi mosquitoes were collected as larvae and pupae from Awash Subah Kilo Town and Haro Adi village, Ethiopia. Adult female An. stephensi, reared from larvae and pupae collected from the field, aged 3-5 days were exposed to impregnated papers of IRS insecticides (propoxur 0.1%, bendiocarb 0.1%, pirimiphos-methyl 0.25%), and insecticides used in LLINs (alpha-cypermethrin 0.05%, deltamethrin 0.05% and permethrin 0.75%), using diagnostic doses and WHO test tubes in a bio-secure insectary at Aklilu Lemma Institute of Pathobiology, Addis Ababa University. For each test and control tube, batches of 25 female An. stephensi were used to test each insecticide used in IRS. Additionally, cone bioassay tests were conducted to expose An. stephensi from the reared population to four brands of LLINs, MAGNet™ (alpha-cypermethrin), PermaNet® 2.0 (deltamethrin), DuraNet© (alpha-cypermethrin) and SafeNet® (alpha-cypermethrin). A batch of ten sugar-fed female mosquitoes aged 2-5 days was exposed to samples taken from five positions/sides of a net. The data from all replicates were pooled and descriptive statistics were used to describe features of the data. RESULTS: All An. stephensi collected from Awash Subah Kilo Town and Haro Adi village (around Metehara) were resistant to all tested insecticides used in both IRS and LLINs. Of the tested LLINs, only MAGNet™ (alpha-cypermethrin active ingredient) caused 100% knockdown and mortality to An. stephensi at 60 min and 24 h post exposure, while all other net brands caused mortality below the WHO cut-off points (< 90%). All these nets, except SafeNet®, were collected during LLIN distribution for community members through the National Malaria Programme, in December 2020. CONCLUSIONS: Anopheles stephensi is resistant to all tested insecticides used in IRS and in the tested LLIN brands did not cause mosquito mortality as expected, except MAGNet. This suggests that control of this invasive vector using existing adult malaria vector control methods will likely be inadequate and that alternative strategies may be necessary.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Humanos , Adulto , Animais , Feminino , Inseticidas/farmacologia , Etiópia , Controle de Mosquitos/métodos , Mosquitos Vetores , Malária/epidemiologia , Resistência a Inseticidas
3.
Malar J ; 22(1): 48, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759908

RESUMO

BACKGROUND: Malaria, transmitted by the bite of infective female Anopheles mosquitoes, remains a global public health problem. The presence of an invasive Anopheles stephensi, capable of transmitting Plasmodium vivax and Plasmodium falciparum parasites was first reported in Ethiopia in 2016. The ecology of An. stephensi is different from that of Anopheles arabiensis, the primary Ethiopian malaria vector, and this suggests that alternative control strategies may be necessary. Larviciding may be an effective alternative strategy, but there is limited information on the susceptibility of Ethiopian An. stephensi to common larvicides. This study aimed to evaluate the efficacy of temephos and Bacillus thuringiensis var. israelensis (Bti) larvicides against larvae of invasive An. stephensi. METHODS: The diagnostic doses of two larvicides, temephos (0.25 ml/l) and Bti (0.05 mg/l) were tested in the laboratory against the immature stages (late third to early fourth stages larvae) of An. stephensi collected from the field and reared in a bio-secure insectary. Larvae were collected from two sites (Haro Adi and Awash Subuh Kilo). For each site, three hundred larvae were tested against each insecticide (as well as an untreated control), in batches of 25. The data from all replicates were pooled and descriptive statistics prepared. RESULTS: The mortality of larvae exposed to temephos was 100% for both sites. Mortality to Bti was 99.7% at Awash and 100% at Haro Adi site. CONCLUSIONS: Larvae of An. stephensi are susceptible to temephos and Bti larvicides suggesting that larviciding with these insecticides through vector control programmes may be effective against An. stephensi in these localities.


Assuntos
Anopheles , Bacillus thuringiensis , Inseticidas , Malária , Animais , Feminino , Humanos , Temefós/farmacologia , Larva , Etiópia , Mosquitos Vetores , Inseticidas/farmacologia
4.
Malar J ; 22(1): 3, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604663

RESUMO

BACKGROUND: The Democratic Republic of the Congo (DRC) is the second most malaria-affected country in the world with 21,608,681 cases reported in 2019. The Kongo Central (KC) Province has a malaria annual incidence of 163 cases/per 1000 inhabitants which are close to the national average of 153.4/1000. However, the malaria prevalence varies both between and within health zones in this province. The main objective of this study was to describe the epidemiology and transmission of malaria among children aged 0 to 10 years in the 4 highest endemic health areas in Kisantu Health Zone (HZ) of KC in DRC. METHODS: A community-based cross-sectional study was conducted from October to November 2017 using multi-stage sampling. A total of 30 villages in 4 health areas in Kisantu HZ were randomly selected. The prevalence of malaria was measured using a thick blood smear (TBS) and known predictors and associated outcomes were assessed. Data are described and association determinants of malaria infection were analysed. RESULTS: A total of 1790 children between 0 and 10 years were included in 30 villages in 4 health areas of Kisantu HZ. The overall prevalence in the study area according to the TBS was 14.8% (95% CI: 13.8-16.6; range: 0-53). The mean sporozoite rate in the study area was 4.3% (95% CI: 2.6-6.6). The determination of kdr-west resistance alleles showed the presence of both L1014S and L1014F with 14.6% heterozygous L1014S/L1014F, 84.4% homozygous 1014F, and 1% homozygous 1014S. The risk factors associated with malaria infection were ground or wooden floors aOR: 15.8 (95% CI: 8.6-29.2), a moderate or severe underweight: 1.5 (1.1-2.3) and to be overweight: 1.9 (95% CI: 1.3-2.7). CONCLUSION: Malaria prevalence differed between villages and health areas within the same health zone. The control strategy activities must be oriented by the variety in the prevalence and transmission of malaria in different areas. The policy against malaria regarding long-lasting insecticidal nets should be based on the evidence of metabolic resistance.


Assuntos
Inseticidas , Malária , Humanos , Criança , Estudos Transversais , Malária/prevenção & controle , Fatores de Risco , Prevalência , República Democrática do Congo/epidemiologia
5.
Malar J ; 22(1): 109, 2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-36967389

RESUMO

BACKGROUND: The functional survival time of long-lasting insecticidal nets (LLINs), which varies across different field contexts, is critical for the successful prevention of malaria transmission. However, there is limited data on LLIN durability in field settings in Ethiopia. METHODS: A three-year longitudinal study was conducted to monitor attrition, physical integrity, and bio-efficacy and residual chemical concentration of LLINs in four regions in Ethiopia. World Health Organization (WHO) guidelines were used to determine sample size, measure physical integrity, and calculate attrition rates, and functional survival time. Yearly bio-efficacy testing was done on randomly selected LLINs. An excel tool developed by vector works project was used to calculate the median functional survival time of the LLINs. Predictors of functional survival were identified by fitting binary and multivariate cox proportional hazards model. RESULTS: A total of 3,396 LLINs were included in the analysis. A total of 3,396 LLINs were included in the analysis. By the end of 36 months, the proportion of LLINs functionally surviving was 12.9% [95% confidence interval (CI) 10.5, 15.6], the rates of attrition due to physical damage and repurposing were 48.8% [95% confidence interval (CI) 45.0, 52.6] and 13.8% [95% confidence interval (CI) 11.6, 14.6], respectively. The estimated median functional survival time was 19 months (95%CI 17, 21). Factors associated with shorter functional survival time include being in a low malaria transmission setting [Adjusted Hazards Ratio (AHR) (95%CI) 1.77 (1.22, 2.55)], rural locations [AHR (95%CI) 1.83 (1.17, 2.84)], and in a room where cooking occurs [AHR (95%CI) 1.28 (1.05, 1.55)]. Bioassay tests revealed that 95.3% (95%CI 86.4, 98.5) of the LLINs met the WHO criteria of bio-efficacy after 24 months of distribution. CONCLUSION: The LLIN survival time was shorter than the expected three years due to high attrition rates and rapid loss of physical integrity. National malaria programmes may consider, procuring more durable LLINs, educating communities on how to prevent damage of LLINs, and revising the current three-year LLIN distribution schedule to ensure sufficient protection is provided by LLINs against malaria transmission. While this paper contributes to the understanding of determinants impacting functional survival, further research is needed to understand factors for the rapid attrition rates and loss of physical integrity of LLINs in field settings.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Humanos , Inseticidas/análise , Estudos Longitudinais , Etiópia , Malária/prevenção & controle , Controle de Mosquitos
6.
Malar J ; 22(1): 187, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337209

RESUMO

BACKGROUND: Anopheles stephensi is an efficient vector of both Plasmodium falciparum and Plasmodium vivax in South Asia and the Middle East. The spread of An. stephensi to countries within the Horn of Africa threatens progress in malaria control in this region as well as the rest of sub-Saharan Africa. METHODS: The available malaria data and the timeline for the detection of An. stephensi was reviewed to analyse the role of An. stephensi in malaria transmission in Horn of Africa of the Eastern Mediterranean Region (EMR) in Djibouti, Somalia, Sudan and Yemen. RESULTS: Malaria incidence in Horn of Africa of EMR and Yemen, increased from 41.6 in 2015 to 61.5 cases per 1000 in 2020. The four countries from this region, Djibouti, Somalia, Sudan and Yemen had reported the detection of An. stephensi as of 2021. In Djibouti City, following its detection in 2012, the estimated incidence increased from 2.5 cases per 1000 in 2013 to 97.6 cases per 1000 in 2020. However, its contribution to malaria transmission in other major cities and in other countries, is unclear because of other factors, quality of the urban malaria data, human mobility, uncertainty about the actual arrival time of An. stephensi and poor entomological surveillance. CONCLUSIONS: While An. stephensi may explain a resurgence of malaria in Djibouti, further investigations are needed to understand its interpretation trends in urban malaria across the greater region. More investment for multisectoral approach and integrated surveillance and control should target all vectors particularly malaria and dengue vectors to guide interventions in urban areas.


Assuntos
Anopheles , Malária , Animais , Humanos , Saúde Pública , Iêmen/epidemiologia , Mosquitos Vetores , Malária/epidemiologia , Malária/prevenção & controle , Organização Mundial da Saúde , Sudão
7.
Malar J ; 22(1): 14, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635720

RESUMO

BACKGROUND: Entomological surveillance provides critical information on vectors for appropriate malaria vector control and strategic decision-making. The widely documented insecticide resistance of malaria vectors in Côte d'Ivoire requires that any vector control intervention deployment be driven by entomological data to optimize its effectiveness and appropriate resource allocations. To achieve this goal, this study documents the results of monthly vector surveillance and insecticide susceptibility tests conducted in 2019 and a review of all previous entomological monitoring data used to guide vector control decision making. Furthermore, susceptibility to pirimiphos-methyl and clothianidin was assessed in addition to chlorfenapyr and pyrethroids (intensity and piperonyl butoxide (PBO) synergism) tests previously reported. Vector bionomic data were conducted monthly in four sites (Sakassou, Béoumi, Dabakala and Nassian) that were selected based on their reported high malaria incidence. Adult mosquitoes were collected using human landing catches (HLCs), pyrethrum spray catches (PSCs), and human-baited CDC light traps to assess vector density, behaviour, species composition and sporozoite infectivity. RESULTS: Pirimiphos-methyl and clothianidin susceptibility was observed in 8 and 10 sites, respectively, while previous data reported chlorfenapyr (200 µg/bottle) susceptibility in 13 of the sites, high pyrethroid resistance intensity and increased mortality with PBO pre-exposure at all 17 tested sites. Anopheles gambiae sensu lato was the predominant malaria vector collected in all four bionomic sites. Vector density was relatively higher in Sakassou throughout the year with mean biting rates of 278.2 bites per person per night (b/p/n) compared to Béoumi, Dabakala and Nassian (mean of 48.5, 81.4 and 26.6 b/p/n, respectively). The mean entomological inoculation rate (EIR) was 4.44 infective bites per person per night (ib/p/n) in Sakassou, 0.34 ib/p/n in Beoumi, 1.17 ib/p/n in Dabakala and 1.02 ib/p/n in Nassian. The highest EIRs were recorded in October in Béoumi (1.71 ib/p/n) and Nassian (3.22 ib/p/n), in July in Dabakala (4.46 ib/p/n) and in May in Sakassou (15.6 ib/p/n). CONCLUSION: Based on all results and data review, the National Malaria Control Programme developed and implemented a stratified insecticide-treated net (ITN) mass distribution in 2021 considering new generation ITNs. These results also supported the selection of clothianidin-based products and an optimal spraying time for the first indoor residual spraying (IRS) campaign in Sakassou and Nassian in 2020.


Assuntos
Anopheles , Inseticidas , Malária , Humanos , Animais , Inseticidas/farmacologia , Malária/epidemiologia , Controle de Mosquitos/métodos , Côte d'Ivoire/epidemiologia , Mosquitos Vetores , Resistência a Inseticidas
8.
Environ Sci Technol ; 57(1): 549-560, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36516327

RESUMO

Synanthropic filth flies transport enteric pathogens from feces to food, which upon consumption poses an infection risk. We evaluated the effect of an onsite sanitation intervention─including fly control measures─in Maputo, Mozambique, on the risk of infection from consuming fly-contaminated food. After enumerating flies at intervention and control sites, we cultured fecal indicator bacteria, quantified gene copies for 22 enteric pathogens via reverse transcription quantitative polymerase chain reaction (RT-qPCR), and developed quantitative microbial risk assessment (QMRA) models to estimate annual risks of infection attributable to fly-contaminated foods. We found that the intervention reduced fly counts at latrine entrances by 69% (aRR = 0.31, [0.13, 0.75]) but not at food preparation areas (aRR = 0.92, [0.33, 2.6]). Half of (23/46) of individual flies were positive for culturable Escherichia coli, and we detected ≥1 pathogen gene from 45% (79/176) of flies, including enteropathogenic E. coli (37/176), adenovirus (25/176), Giardia spp. (13/176), and Trichuris trichiura (12/176). We detected ≥1 pathogen gene from half the flies caught in control (54%, 30/56) and intervention compounds (50%, 17/34) at baseline, which decreased 12 months post-intervention to 43% (23/53) at control compounds and 27% (9/33) for intervention compounds. These data indicate flies as a potentially important mechanical vector for enteric pathogen transmission in this setting. The intervention may have reduced the risk of fly-mediated enteric infection for some pathogens, but infrequent detection resulted in wide confidence intervals; we observed no apparent difference in infection risk between groups in a pooled estimate of all pathogens assessed (aRR = 0.84, [0.61, 1.2]). The infection risks posed by flies suggest that the design of sanitation systems and service delivery should include fly control measures to prevent enteric pathogen transmission.


Assuntos
Dípteros , Saneamento , Animais , Escherichia coli , Moçambique , Bactérias , Fezes
9.
J Infect Dis ; 225(8): 1424-1434, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33175129

RESUMO

BACKGROUND: Resistance to major public health insecticides in Côte d'Ivoire has intensified and now threatens the long-term effectiveness of malaria vector control interventions. METHODS: This study evaluated the bioefficacy of conventional and next-generation long-lasting insecticidal nets (LLINs), determined resistance profiles, and characterized molecular and metabolic mechanisms in wild Anopheles coluzzii from Southeast Côte d'Ivoire in 2019. RESULTS: Phenotypic resistance was intense: >25% of mosquitoes survived exposure to 10 times the doses of pyrethroids required to kill susceptible populations. Similarly, the 24-hour mortality rate with deltamethrin-only LLINs was very low and not significantly different from that with an untreated net. Sublethal pyrethroid exposure did not induce significant delayed vector mortality effects 72 hours later. In contrast, LLINs containing the synergist piperonyl butoxide, or new insecticides clothianidin and chlorfenapyr, were highly toxic to A. coluzzii. Pyrethroid-susceptible A. coluzzii were significantly more likely to be infected with malaria, compared with those that survived insecticidal exposure. Pyrethroid resistance was associated with significant overexpression of CYP6P4, CYP6P3, and CYP6Z1. CONCLUSIONS: Study findings raise concerns regarding the operational failure of standard LLINs and support the urgent deployment of vector control interventions incorporating piperonyl butoxide, chlorfenapyr, or clothianidin in areas of high resistance intensity in Côte d'Ivoire.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Animais , Côte d'Ivoire , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores , Butóxido de Piperonila/farmacologia , Piretrinas/farmacologia
10.
BMC Med ; 20(1): 135, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35440085

RESUMO

BACKGROUND: Sub-Saharan Africa has seen substantial reductions in cases and deaths due to malaria over the past two decades. While this reduction is primarily due to an increasing expansion of interventions, urbanisation has played its part as urban areas typically experience substantially less malaria transmission than rural areas. However, this may be partially lost with the invasion and establishment of Anopheles stephensi. A. stephensi, the primary urban malaria vector in Asia, was first detected in Africa in 2012 in Djibouti and was subsequently identified in Ethiopia in 2016, and later in Sudan and Somalia. In Djibouti, malaria cases have increased 30-fold from 2012 to 2019 though the impact in the wider region remains unclear. METHODS: Here, we have adapted an existing model of mechanistic malaria transmission to estimate the increase in vector density required to explain the trends in malaria cases seen in Djibouti. To account for the observed plasticity in An. stephensi behaviour, and the unknowns of how it will establish in a novel environment, we sample behavioural parameters in order to account for a wide range of uncertainty. This quantification is then applied to Ethiopia, considering temperature-dependent extrinsic incubation periods, pre-existing vector-control interventions and Plasmodium falciparum prevalence in order to assess the potential impact of An. stephensi establishment on P. falciparum transmission. Following this, we estimate the potential impact of scaling up ITN (insecticide-treated nets)/IRS (indoor residual spraying) and implementing piperonyl butoxide (PBO) ITNs and larval source management, as well as their economic costs. RESULTS: We estimate that annual P. falciparum malaria cases could increase by 50% (95% CI 14-90) if no additional interventions are implemented. The implementation of sufficient control measures to reduce malaria transmission to pre-stephensi levels will cost hundreds of millions of USD. CONCLUSIONS: Substantial heterogeneity across the country is predicted and large increases in vector control interventions could be needed to prevent a major public health emergency.


Assuntos
Anopheles , Malária Falciparum , Malária , Animais , Etiópia/epidemiologia , Humanos , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Mosquitos Vetores , Plasmodium falciparum , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA