Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Proteome Res ; 22(9): 2925-2935, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37606205

RESUMO

Sickle cell disease and ß-thalassemia represent hemoglobinopathies arising from dysfunctional or underproduced ß-globin chains, respectively. In both diseases, red blood cell injury and anemia are the impetus for end organ injury. Because persistent erythrophagocytosis is a hallmark of these genetic maladies, it is critical to understand how macrophage phenotype polarizations in tissue compartments can inform on disease progression. Murine models of sickle cell disease and ß-thalassemia allow for a basic understanding of the mechanisms and provide for translation to human disease. A multi-omics approach to understanding the macrophage metabolism and protein changes in two murine models of ß-globinopathy was performed on peripheral blood mononuclear cells as well as spleen and liver macrophages isolated from Berkley sickle cell disease (Berk-ss) and heterozygous B1/B2 globin gene deletion (Hbbth3/+) mice. The results from these experiments revealed that the metabolome and proteome of macrophages are polarized to a distinct phenotype in Berk-ss and Hbbth3/+ compared with each other and their common-background mice (C57BL6/J). Further, spleen and liver macrophages revealed distinct disease-specific phenotypes, suggesting that macrophages become differentially polarized and reprogrammed within tissue compartments. We conclude that tissue recruitment, polarization, and metabolic and proteomic reprogramming of macrophages in Berk-ss and Hbbth3/+ mice may be relevant to disease progression in other tissue.


Assuntos
Anemia Falciforme , Talassemia beta , Humanos , Animais , Camundongos , Monócitos , Talassemia beta/genética , Leucócitos Mononucleares , Proteômica , Anemia Falciforme/genética , Macrófagos , Progressão da Doença
2.
Circulation ; 146(9): 699-714, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862102

RESUMO

BACKGROUND: Abnormalities in Ca2+ homeostasis are associated with cardiac arrhythmias and heart failure. Triadin plays an important role in Ca2+ homeostasis in cardiomyocytes. Alternative splicing of a single triadin gene produces multiple triadin isoforms. The cardiac-predominant isoform, mouse MT-1 or human Trisk32, is encoded by triadin exons 1 to 8. In humans, mutations in the triadin gene that lead to a reduction in Trisk32 levels in the heart can cause cardiac dysfunction and arrhythmias. Decreased levels of Trisk32 in the heart are also common in patients with heart failure. However, mechanisms that maintain triadin isoform composition in the heart remain elusive. METHODS: We analyzed triadin expression in heart explants from patients with heart failure and cardiac arrhythmias and in hearts from mice carrying a knockout allele for Trdn-as, a cardiomyocyte-specific long noncoding RNA encoded by the antisense strand of the triadin gene, between exons 9 and 11. Catecholamine challenge with isoproterenol was performed on Trdn-as knockout mice to assess the role of Trdn-as in cardiac arrhythmogenesis, as assessed by ECG. Ca2+ transients in adult mouse cardiomyocytes were measured with the IonOptix platform or the GCaMP system. Biochemistry assays, single-molecule fluorescence in situ hybridization, subcellular localization imaging, RNA sequencing, and molecular rescue assays were used to investigate the mechanisms by which Trdn-as regulates cardiac function and triadin levels in the heart. RESULTS: We report that Trdn-as maintains cardiac function, at least in part, by regulating alternative splicing of the triadin gene. Knockout of Trdn-as in mice downregulates cardiac triadin, impairs Ca2+ handling, and causes premature death. Trdn-as knockout mice are susceptible to cardiac arrhythmias in response to catecholamine challenge. Normalization of cardiac triadin levels in Trdn-as knockout cardiomyocytes is sufficient to restore Ca2+ handling. Last, Trdn-as colocalizes and interacts with serine/arginine splicing factors in cardiomyocyte nuclei and is essential for efficient recruitment of splicing factors to triadin precursor mRNA. CONCLUSIONS: These findings reveal regulation of alternative splicing as a novel mechanism by which a long noncoding RNA controls cardiac function. This study indicates potential therapeutics for heart disease by targeting the long noncoding RNA or pathways regulating alternative splicing.


Assuntos
Processamento Alternativo , Proteínas de Transporte , Insuficiência Cardíaca , Proteínas Musculares , RNA Longo não Codificante , Animais , Arritmias Cardíacas , Proteínas de Transporte/genética , Catecolaminas , Coração/fisiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Hibridização in Situ Fluorescente , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Longo não Codificante/genética
3.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L355-L371, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35763400

RESUMO

Dysregulated metabolism characterizes both animal and human forms of pulmonary hypertension (PH). Enzymes involved in fatty acid metabolism have previously not been assessed in human pulmonary arteries affected by pulmonary arterial hypertension (PAH), and how inhibition of fatty acid oxidation (FAO) may attenuate PH remains unclear. Fatty acid metabolism gene transcription was quantified in laser-dissected pulmonary arteries from 10 explanted lungs with advanced PAH (5 idiopathic, 5 associated with systemic sclerosis), and 5 donors without lung diseases. Effects of oxfenicine, a FAO inhibitor, on female Sugen 5416-chronic hypoxia (SuHx) rats were studied in vivo using right heart catheterization, and ex vivo using perfused lungs and pulmonary artery ring segments. The impact of pharmacologic (oxfenicine) and genetic (carnitine palmitoyltransferase 1a heterozygosity) FAO suppression was additionally probed in mouse models of Schistosoma and hypoxia-induced PH. Potential mechanisms underlying FAO-induced PH pathogenesis were examined by quantifying ATP and mitochondrial mass in oxfenicine-treated SuHx pulmonary arterial cells, and by assessing pulmonary arterial macrophage infiltration with immunohistochemistry. We found upregulated pulmonary arterial transcription of 26 and 13 FAO genes in idiopathic and systemic sclerosis-associated PAH, respectively. In addition to promoting de-remodeling of pulmonary arteries in SuHx rats, oxfenicine attenuated endothelin-1-induced vasoconstriction. FAO inhibition also conferred modest benefit in the two mouse models of PH. Oxfenicine increased mitochondrial mass in cultured rat pulmonary arterial cells, and decreased the density of perivascular macrophage infiltration in pulmonary arteries of treated SuHx rats. In summary, FAO inhibition attenuated experimental PH, and may be beneficial in human PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Escleroderma Sistêmico , Animais , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Feminino , Humanos , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Camundongos , Artéria Pulmonar/metabolismo , Ratos , Escleroderma Sistêmico/patologia , Remodelação Vascular
4.
J Physiol ; 597(4): 1073-1085, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29931797

RESUMO

KEY POINTS: Sickle cell disease (SCD) results in cardiopulmonary dysfunction, which may be exacerbated by prolonged exposure to environmental hypoxia. It is currently unknown whether exposure to mild and moderate altitude exacerbates SCD associated cardiopulmonary and systemic complications. Three months of exposure to mild (1609 m) and moderate (2438 m) altitude increased rates of haemolysis and right ventricular systolic pressures in mice with SCD compared to healthy wild-type cohorts and SCD mice at sea level. The haemodynamic changes in SCD mice that had lived at mild and moderate altitude were accompanied by changes in the balance between pulmonary vascular endothelial nitric oxide synthase and endothelin receptor expression and impaired exercise tolerance. These data demonstrate that chronic altitude exposure exacerbates the complications associated with SCD and provides pertinent information for the clinical counselling of SCD patients. ABSTRACT: Exposure to high altitude worsens symptoms and crises in patients with sickle cell disease (SCD). However, it remains unclear whether prolonged exposure to low barometric pressures exacerbates SCD aetiologies or impairs quality of life. We tested the hypothesis that, relative to wild-type (WT) mice, Berkley sickle cell mice (BERK-SS) residing at sea level, mild (1609 m) and moderate (2438 m) altitude would have a higher rate of haemolysis, impaired cardiac function and reduced exercise tolerance, and that the level of altitude would worsen these decrements. Following 3 months of altitude exposure, right ventricular systolic pressure was measured (solid-state transducer). In addition, the adaptive balance between pulmonary vascular endothelial nitric oxide synthase and endothelin was assessed in lung tissue to determine differences in pulmonary vascular adaptation and the speed/duration relationship (critical speed) was used to evaluate treadmill exercise tolerance. At all altitudes, BERK-SS mice had a significantly lower percentage haemocrit and higher total bilirubin and free haemoglobin concentration (P < 0.05 for all). right ventricular systolic pressures in BERK-SS were higher than WT at moderate altitude and also compared to BERK-SS at sea level (P < 0.05, for both). Critical speed was significantly lower in BERK-SS at mild and moderate altitude (P < 0.05). BERK-SS demonstrated exacerbated SCD complications and reduced exercise capacity associated with an increase in altitude. These results suggest that exposure to mild and moderate altitude enhances the progression of SCD in BERK-SS mice compared to healthy WT cohorts and BERK-SS mice at sea level and provides crucial information for the clinical counselling of SCD patients.


Assuntos
Altitude , Anemia Falciforme/fisiopatologia , Endotélio Vascular/fisiopatologia , Pulmão/irrigação sanguínea , Esforço Físico , Aclimatação , Anemia Falciforme/sangue , Animais , Pressão Sanguínea , Endotelinas/metabolismo , Endotélio Vascular/metabolismo , Feminino , Hemólise , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L765-L774, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30047285

RESUMO

Intravascular sickling and lysis of red blood cells, a hallmark feature of sickle cell disease (SCD), releases hemoglobin (Hb) into the circulation. Increased cell-free Hb has been linked to vasculopathy and in vitro lipid oxidation. Scavenger plasma proteins haptoglobin (Hp) and hemopexin (Hpx) can attenuate cell-free Hb and total plasma heme lipid-oxidative capacity but are depleted in SCD. Here, we isolated lipids from BERK-SS mice, guinea pigs (GP) infused with heme-albumin, and patients with SCD undergoing regular exchange transfusion therapy and evaluated the level of lipid oxidation. Malondialdehyde formation, an end product of lipid peroxidation, was increased in BERK-SS mice, purified lipid fractions of the heme-albumin infused GP, and patients with SCD compared with controls. In humans, the extent of lipid oxidation was associated with the absence of Hp as well as decreased Hpx in plasma samples. Postmortem pulmonary tissue obtained from patients with SCD demonstrated oxidized LDL deposition in the pulmonary artery. The relationship between no Hp and low Hpx levels with greater LDL and HDL oxidation demonstrates the loss of protection against cell-free Hb and total plasma heme-mediated lipid oxidation and tissue injury in SCD. Strategies to protect against plasma lipid oxidation by cell-free Hb and total plasma heme (e.g., therapeutic Hp and Hpx replacement) may diminish the deleterious effects of cell-free Hb and total plasma heme toward the vascular system in SCD.


Assuntos
Anemia Falciforme/fisiopatologia , Haptoglobinas/metabolismo , Hemoglobinas/deficiência , Hemopexina/deficiência , Lipídeos/química , Lipoproteínas/química , Adulto , Animais , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Cobaias , Heme/química , Humanos , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Oxirredução , Adulto Jovem
6.
Nitric Oxide ; 76: 29-36, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29526566

RESUMO

Free hemoglobin (Hb) associated with hemolysis extravasates into vascular tissue and depletes nitric oxide (NO), which leads to impaired vascular function and could impair skeletal muscle metabolic control during exercise. We tested the hypothesis that: 1) free Hb would extravasate into skeletal muscle tissue, reducing the contracting skeletal muscle O2 delivery/O2 utilization ratio (microvascular PO2, PO2mv) to a similar extent as that observed following NO synthase (NOS) blockade, and 2) that the Hb scavenging protein haptoglobin (Hp) would prevent Hb extravasation and inhibit these skeletal muscle tissue effects. PO2mv was measured in eight rats (phosphorescence quenching) at rest and during 180 s of electrically induced (1-Hz) twitch spinotrapezius muscle contractions (experiment 1). A second group of seven rats was also used to investigate the effects of Hb + Hp (experiment 2). For both experiments, measurements were made: 1) during control conditions, 2) following a bolus infusion of either Hb (50 mg/kg) or Hb + Hp (50 mg/kg), and 3) following local superfusion of NG-nitro-l-arginine methyl ester (L-NAME; 10 mg/kg). Additional experiments were completed to visualize Hb extravasation into the muscular tissue using Click chemistry techniques. There were no significant differences in the PO2mv observed at rest for any condition in either experiment (p > 0.05 for all). In experiment 1, both Hb and L-NAME reduced the PO2mv significantly during the steady-state of muscle contractions when compared to control conditions with no differences between Hb and L-NAME (control: 24 ±â€¯1, Hb: 21 ±â€¯1, L-NAME: 20 ±â€¯1 mmHg, p < 0.05). In experiment 2, only L-NAME resulted in a significantly lower PO2mv during the steady-state of muscle contractions (control: 25 ± 1, Hb + Hp: 22 ± 2, L-NAME: 18 ± 1 mmHg, p < 0.05). Free Hb lowered the blood-myocyte O2 driving force to a level not significantly different from L-NAME. However, infusing Hb bound to Hp resulted in no significant differences in steady-state PO2mv during muscle contractions when compared to control. Surprisingly, we did not observe Hb accumulation in skeletal muscle tissue. Taken together these data suggests that free Hb impairs O2 delivery/utilization via a NO scavenging effect. Furthermore, the unchanged PO2mv steady-state observed following Hb + Hp further indicates that vascular compartmentalization of Hb by the scavenger protein haptoglobin may improve skeletal muscle metabolic control and potentially exercise tolerance in those afflicted with hemolytic diseases.


Assuntos
Hemoglobinas/metabolismo , Microvasos/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
8.
Am J Respir Crit Care Med ; 193(10): 1111-22, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26694989

RESUMO

RATIONALE: Hemolysis occurs not only in conditions such as sickle cell disease and malaria but also during transfusion of stored blood, extracorporeal circulation, and sepsis. Cell-free Hb depletes nitric oxide (NO) in the vasculature, causing vasoconstriction and eventually cardiovascular complications. We hypothesize that Hb-binding proteins may preserve vascular NO signaling during hemolysis. OBJECTIVES: Characterization of an archetypical function by which Hb scavenger proteins could preserve NO signaling during hemolysis. METHODS: We investigated NO reaction kinetics, effects on arterial NO signaling, and tissue distribution of cell-free Hb and its scavenger protein complexes. MEASUREMENTS AND MAIN RESULTS: Extravascular translocation of cell-free Hb into interstitial spaces, including the vascular smooth muscle cell layer of rat and pig coronary arteries, promotes vascular NO resistance. This critical disease process is blocked by haptoglobin. Haptoglobin does not change NO dioxygenation rates of Hb; rather, the large size of the Hb:haptoglobin complex prevents Hb extravasation, which uncouples NO/Hb interaction and vasoconstriction. Size-selective compartmentalization of Hb functions as a substitute for red blood cells after hemolysis and preserves NO signaling in the vasculature. We found that evolutionarily and structurally unrelated Hb-binding proteins, such as PIT54 found in avian species, functionally converged with haptoglobin to protect NO signaling by sequestering cell-free Hb in large protein complexes. CONCLUSIONS: Sequential compartmentalization of Hb by erythrocytes and scavenger protein complexes is an archetypical mechanism, which may have supported coevolution of hemolysis and normal vascular function. Therapeutic supplementation of Hb scavengers may restore vascular NO signaling and attenuate disease complications in patients with hemolysis.


Assuntos
Haptoglobinas/farmacologia , Hemólise/efeitos dos fármacos , Óxido Nítrico/metabolismo , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Animais , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiologia , Modelos Animais de Doenças , Humanos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Ratos , Suínos , Resistência Vascular/fisiologia
9.
Circulation ; 129(17): 1770-80, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24503951

RESUMO

BACKGROUND: Chloride intracellular channel 4 (CLIC4) is highly expressed in the endothelium of remodeled pulmonary vessels and plexiform lesions of patients with pulmonary arterial hypertension. CLIC4 regulates vasculogenesis through endothelial tube formation. Aberrant CLIC4 expression may contribute to the vascular pathology of pulmonary arterial hypertension. METHODS AND RESULTS: CLIC4 protein expression was increased in plasma and blood-derived endothelial cells from patients with idiopathic pulmonary arterial hypertension and in the pulmonary vascular endothelium of 3 rat models of pulmonary hypertension. CLIC4 gene deletion markedly attenuated the development of chronic hypoxia-induced pulmonary hypertension in mice. Adenoviral overexpression of CLIC4 in cultured human pulmonary artery endothelial cells compromised pulmonary endothelial barrier function and enhanced their survival and angiogenic capacity, whereas CLIC4 shRNA had an inhibitory effect. Similarly, inhibition of CLIC4 expression in blood-derived endothelial cells from patients with idiopathic pulmonary arterial hypertension attenuated the abnormal angiogenic behavior that characterizes these cells. The mechanism of CLIC4 effects involves p65-mediated activation of nuclear factor-κB, followed by stabilization of hypoxia-inducible factor-1α and increased downstream production of vascular endothelial growth factor and endothelin-1. CONCLUSION: Increased CLIC4 expression is an early manifestation and mediator of endothelial dysfunction in pulmonary hypertension.


Assuntos
Canais de Cloreto/fisiologia , Endotélio Vascular/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Proteínas Mitocondriais/fisiologia , Artéria Pulmonar/fisiopatologia , Animais , Células Cultivadas , Canais de Cloreto/genética , Endotélio Vascular/citologia , Hipertensão Pulmonar Primária Familiar , Humanos , Hipertensão Pulmonar/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Proteínas Mitocondriais/genética , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiopatologia , Artéria Pulmonar/citologia , Ratos , Ratos Sprague-Dawley , Fator de Transcrição RelA/fisiologia
10.
Circ Res ; 110(5): 739-48, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22282194

RESUMO

RATIONALE: Histone deacetylase (HDAC) inhibitors are efficacious in models of hypertension-induced left ventricular heart failure. The consequences of HDAC inhibition in the context of pulmonary hypertension with associated right ventricular cardiac remodeling are poorly understood. OBJECTIVE: This study was performed to assess the utility of selective small-molecule inhibitors of class I HDACs in a preclinical model of pulmonary hypertension. METHODS AND RESULTS: Rats were exposed to hypobaric hypoxia for 3 weeks in the absence or presence of a benzamide HDAC inhibitor, MGCD0103, which selectively inhibits class I HDACs 1, 2, and 3. The compound reduced pulmonary arterial pressure more dramatically than tadalafil, a standard-of-care therapy for human pulmonary hypertension that functions as a vasodilator. MGCD0103 improved pulmonary artery acceleration time and reduced systolic notching of the pulmonary artery flow envelope, which suggests a positive impact of the HDAC inhibitor on pulmonary vascular remodeling and stiffening. Similar results were obtained with an independent class I HDAC-selective inhibitor, MS-275. Reduced pulmonary arterial pressure in MGCD0103-treated animals was associated with blunted pulmonary arterial wall thickening because of suppression of smooth muscle cell proliferation. Right ventricular function was maintained in MGCD0103-treated animals. Although the class I HDAC inhibitor only modestly reduced right ventricular hypertrophy, it had multiple beneficial effects on the right ventricle, which included suppression of pathological gene expression, inhibition of proapoptotic caspase activity, and repression of proinflammatory protein expression. CONCLUSIONS: By targeting distinct pathogenic mechanisms, isoform-selective HDAC inhibitors have potential as novel therapeutics for pulmonary hypertension that will complement vasodilator standards of care.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/efeitos dos fármacos , Hipertensão Pulmonar/prevenção & controle , Músculo Liso Vascular/citologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Músculo Liso Vascular/efeitos dos fármacos , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia
11.
Am J Respir Cell Mol Biol ; 49(4): 619-26, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23713977

RESUMO

The release of hemoglobin (Hb) with hemolysis causes vascular dysfunction. New evidence implicates Hb-induced NF-κB and hypoxia inducible factor (HIF) activation, which may be under the control of a Toll-like receptor (TLR)-signaling pathway. Nearly all TLR-signaling pathways activate the myeloid differentiation primary response gene-88 (MyD88) that regulates NF-κB. We hypothesized that the differing transition states of Hb influence endothelial cell permeability via NF-κB activation and HIF regulation through a MyD88-dependent pathway. In cultured human dermal microvascular endothelial cells (HMECs-1), we examined the effects of Hb in the ferrous (HbFe(2+)), ferric (HbFe(3+)), and ferryl (HbFe(4+)) transition states on NF-κB and HIF activity, HIF-1α and HIF-2α mRNA up-regulation, and monolayer permeability, in the presence or absence of TLR4, MyD88, NF-κB, or HIF inhibition, as well as superoxide dismutase (SOD) and catalase. Our data showed that cell-free Hb, in each transition state, induced NF-κB and HIF activity, up-regulated HIF-1α and HIF-2α mRNA, and increased HMEC-1 permeability. The blockade of either MyD88 or NF-κB, but not TLR4, attenuated Hb-induced HIF activity, the up-regulation HIF-1 and HIF-2α mRNA, and HMEC-1 permeability. The inhibition of HIF activity exerted less of an effect on Hb-induced monolayer permeability. Moreover, SOD and catalase attenuated NF-κB, HIF activity, and monolayer permeability. Our results demonstrate that Hb-induced NF-κB and HIF are regulated by two mechanisms, either MyD88 activation or Hb transition state-induced ROS formation, that influence HMEC-1 permeability.


Assuntos
Células Endoteliais/metabolismo , Hemoglobinas/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Catalase/genética , Catalase/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular , Hemoglobinas/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Oxirredução , Permeabilidade , RNA Mensageiro/genética , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Regulação para Cima
12.
Front Med (Lausanne) ; 10: 1149005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502360

RESUMO

Introduction: Human and murine sickle cell disease (SCD) associated pulmonary hypertension (PH) is defined by hemolysis, nitric oxide depletion, inflammation, and thrombosis. Further, hemoglobin (Hb), heme, and iron accumulation are consistently observed in pulmonary adventitial macrophages at autopsy and in hypoxia driven rodent models of SCD, which show distribution of ferric and ferrous Hb as well as HO-1 and ferritin heavy chain. The anatomic localization of these macrophages is consistent with areas of significant vascular remodeling. However, their contributions toward progressive disease may include unique, but also common mechanisms, that overlap with idiopathic and other forms of pulmonary hypertension. These processes likely extend to the vasculature of other organs that are consistently impaired in advanced SCD. Methods: To date, limited information is available on the metabolism of macrophages or monocytes isolated from lung, spleen, and peripheral blood in humans or murine models of SCD. Results: Here we hypothesize that metabolism of macrophages and monocytes isolated from this triad of tissue differs between Berkley SCD mice exposed for ten weeks to moderate hypobaric hypoxia (simulated 8,000 ft, 15.4% O2) or normoxia (Denver altitude, 5000 ft) with normoxia exposed wild type mice evaluated as controls. Discussion: This study represents an initial set of data that describes the metabolism in monocytes and macrophages isolated from moderately hypoxic SCD mice peripheral lung, spleen, and blood mononuclear cells.

13.
Clin Appl Thromb Hemost ; 29: 10760296231186144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469147

RESUMO

Aberrant coagulation in sickle cell disease (SCD) is linked to extracellular vesicle (EV) exposure. However, there is no consensus on the contributions of small EVs (SEVs) and large EVs (LEVs) toward underlying coagulopathy or on their molecular cargo. The present observational study compared the thrombin potential of SEVs and LEVs isolated from the plasma of stable pediatric and adult SCD patients. Further, EV lipid and protein contents were analyzed to define markers consistent with activation of thrombin and markers of underlying coagulopathy. Results suggested that LEVs-but not SEVs-from pediatrics and adults similarly enhanced phosphatidylserine (PS)-dependent thrombin generation, and cell membrane procoagulant PS (18:0;20:4 and 18:0;18:1) were the most abundant lipids found in LEVs. Further, LEVs showed activated coagulation in protein pathway analyses, while SEVs demonstrated high levels of cholesterol esters and a protein pathway analysis that identified complement factors and inflammation. We suggest that thrombin potential of EVs from both stable pediatric and adult SCD patients is similarly dependent on size and show lipid and protein contents that identify underlying markers of coagulation and inflammation.


Assuntos
Anemia Falciforme , Vesículas Extracelulares , Humanos , Adulto , Criança , Trombina/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Inflamação/metabolismo , Lipídeos
14.
Am J Physiol Lung Cell Mol Physiol ; 303(4): L312-26, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22728465

RESUMO

Cell-free hemoglobin (Hb) exposure may be a pathogenic mediator in the development of pulmonary arterial hypertension (PAH), and when combined with chronic hypoxia the potential for exacerbation of PAH and vascular remodeling is likely more pronounced. We hypothesized that Hb may contribute to hypoxia-driven PAH collectively as a prooxidant, inflammatory, and nitric oxide (NO) scavenger. Using programmable micropump technology, we exposed male Sprague-Dawley rats housed under room air or hypoxia to 12 or 30 mg per day Hb for 3, 5, and 7 wk. Blood pressure, cardiac output, right ventricular hypertrophy, and indexes of pulmonary vascular remodeling were evaluated. Additionally, markers of oxidative stress, NO bioavailability and inflammation were determined. Hb increased pulmonary arterial (PA) pressure, pulmonary vessel wall stiffening, and right heart hypertrophy with temporal and dose dependence in both room air and hypoxic cohorts. Hb induced a modest increase in plasma oxidative stress markers (malondialdehyde and 4-hydroxynonenal), no change in NO bioavailability, and increased lung ICAM protein expression. Treatment with the antioxidant Tempol attenuated Hb-induced pulmonary arterial wall thickening, but not PA pressures or ICAM expression. Chronic exposure to low plasma Hb concentrations (range = 3-10 µM) lasting up to 7 wk in rodents induces pulmonary vascular disease via inflammation and to a lesser extent by Hb-mediated oxidation. Tempol demonstrated a modest effect on the attenuation of Hb-induced pulmonary vascular disease. NO bioavailability was found to be of minimal importance in this model.


Assuntos
Hemoglobinas/efeitos adversos , Inflamação/patologia , Pneumopatias/induzido quimicamente , Doenças Vasculares/induzido quimicamente , Animais , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Débito Cardíaco/efeitos dos fármacos , Óxidos N-Cíclicos/farmacologia , Hemodinâmica/efeitos dos fármacos , Hemoglobinas/administração & dosagem , Hemoglobinas/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Inflamação/complicações , Bombas de Infusão , Molécula 1 de Adesão Intercelular/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Pneumopatias/sangue , Pneumopatias/patologia , Pneumopatias/urina , Masculino , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Marcadores de Spin , Doenças Vasculares/sangue , Doenças Vasculares/patologia , Doenças Vasculares/urina
15.
J Mol Cell Cardiol ; 51(1): 41-50, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21539845

RESUMO

Small molecule histone deacetylase (HDAC) inhibitors block adverse cardiac remodeling in animal models of heart failure. The efficacious compounds target class I, class IIb and, to a lesser extent, class IIa HDACs. It is hypothesized that a selective inhibitor of a specific HDAC class (or an isoform within that class) will provide a favorable therapeutic window for the treatment of heart failure, although the optimal selectivity profile for such a compound remains unknown. Genetic studies have suggested that class I HDACs promote pathological cardiac remodeling, while class IIa HDACs are protective. In contrast, nothing is known about the function or regulation of class IIb HDACs in the heart. We developed assays to quantify catalytic activity of distinct HDAC classes in left and right ventricular cardiac tissue from animal models of hypertensive heart disease. Class I and IIa HDAC activity was elevated in some but not all diseased tissues. In contrast, catalytic activity of the class IIb HDAC, HDAC6, was consistently increased in stressed myocardium, but not in a model of physiologic hypertrophy. HDAC6 catalytic activity was also induced by diverse extracellular stimuli in cultured cardiac myocytes and fibroblasts. These findings suggest an unforeseen role for HDAC6 in the heart, and highlight the need for pre-clinical evaluation of HDAC6-selective inhibitors to determine whether this HDAC isoform is pathological or protective in the setting of cardiovascular disease.


Assuntos
Histona Desacetilases/metabolismo , Hipertensão/enzimologia , Miocárdio/enzimologia , Adenoviridae/genética , Animais , Doenças Cardiovasculares , Células Cultivadas , Ventrículos do Coração/enzimologia , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/biossíntese , Histona Desacetilases/genética , Hipertensão/patologia , Masculino , Camundongos , Miócitos Cardíacos/enzimologia , Reação em Cadeia da Polimerase , Isoformas de Proteínas , Interferência de RNA , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Remodelação Ventricular
16.
Cells ; 10(12)2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34943862

RESUMO

G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Metabólicas/metabolismo , Metaboloma , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Ligantes , Modelos Biológicos
17.
Pulm Circ ; 11(4): 20458940211055996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777785

RESUMO

Sickle cell anemia and ß-thalassemia intermedia are very different genetically determined hemoglobinopathies predisposing to pulmonary hypertension. The etiologies responsible for the associated development of pulmonary hypertension in both diseases are multi-factorial with extensive mechanistic contributors described. Both sickle cell anemia and ß-thalassemia intermedia present with intra and extravascular hemolysis. And because sickle cell anemia and ß-thalassemia intermedia share features of extravascular hemolysis, macrophage iron excess and anemia we sought to characterize the common features of the pulmonary hypertension phenotype, cardiac mechanics, and function as well as lung and right ventricular metabolism. Within the concept of iron, we have defined a unique pulmonary vascular iron accumulation in lungs of sickle cell anemia pulmonary hypertension patients at autopsy. This observation is unlike findings in idiopathic or other forms of pulmonary arterial hypertension. In this study, we hypothesized that a common pathophysiology would characterize the pulmonary hypertension phenotype in sickle cell anemia and ß-thalassemia intermedia murine models. However, unlike sickle cell anemia, ß-thalassemia is also a disease of dyserythropoiesis, with increased iron absorption and cellular iron extrusion. This process is mediated by high erythroferrone and low hepcidin levels as well as dysregulated iron transport due transferrin saturation, so there may be differences as well. Herein we describe common and divergent features of pulmonary hypertension in aged Berk-ss (sickle cell anemia) and Hbbth/3+ (intermediate ß-thalassemia) mice and suggest translational utility as proof-of-concept models to study pulmonary hypertension therapeutics specific to genetic anemias.

18.
Pulm Circ ; 11(4): 20458940211056806, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777787

RESUMO

Macrophages are a heterogeneous population with both pro- and anti-inflammatory functions play an essential role in maintaining tissue homeostasis, promoting inflammation under pathological conditions, and tissue repair after injury. In pulmonary hypertension, the M1 phenotype is more pro-inflammatory compared to the M2 phenotype, which is involved in tissue repair. The role of macrophages in the initiation and progression of pulmonary hypertension is well studied. However, their role in the regression of established pulmonary hypertension is not well known. Rats chronically exposed to hemoglobin (Hb) plus hypoxia (HX) share similarities to humans with pulmonary hypertension associated with hemolytic disease, including the presence of a unique macrophage phenotype surrounding distal vessels that are associated with vascular remodeling. These lung macrophages are characterized by high iron content, HO-1, ET-1, and IL-6, and are recruited from the circulation. Depletion of macrophages in this model prevents the development of pulmonary hypertension and vascular remodeling. In this study, we specifically investigate the regression of pulmonary hypertension over a four-week duration after rats were removed from Hb + HX exposure with and without gadolinium chloride administration. Withdrawal of Hb + HX reversed systolic pressures and right ventricular function after Hb + Hx exposure in four weeks. Our data show that depleting circulating monocytes/macrophages during reversal prevents complete recovery of right ventricular systolic pressure and vascular remodeling in this rat model of pulmonary hypertension at four weeks post exposure. The data presented offer a novel insight into the role of macrophages in the processes of pulmonary hypertension regression in a rodent model of Hb + Hx-driven disease.

19.
Front Immunol ; 12: 627944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763072

RESUMO

Sickle cell disease (SCD) is an inherited hemolytic disorder, defined by a point mutation in the ß-globin gene. Stress conditions such as infection, inflammation, dehydration, and hypoxia trigger erythrocyte sickling. Sickled red blood cells (RBCs) hemolyze more rapidly, show impaired deformability, and increased adhesive properties to the endothelium. In a proinflammatory, pro-coagulative environment with preexisting endothelial dysfunction, sickled RBCs promote vascular occlusion. Hepatobiliary involvement related to the sickling process, such as an acute sickle hepatic crisis, is observed in about 10% of acute sickle cell crisis incidents. In mice, ligation of CD40 with an agonistic antibody leads to a macrophage activation in the liver, triggering a sequence of systemic inflammation, endothelial cell activation, thrombosis, and focal ischemia. We found that anti-CD40 antibody injection in sickle cell mice induces a systemic inflammatory and hemodynamic response with accelerated hemolysis, extensive vaso-occlusion, and large ischemic infarctions in the liver mimicking an acute hepatic crisis. Administration of the tumor necrosis factor-α (TNF-α) blocker, etanercept, and the heme scavenger protein, hemopexin attenuated end-organ damage. These data collectively suggest that anti-CD40 administration offers a novel acute liver crisis model in humanized sickle mice, allowing for evaluation of therapeutic proof-of-concept.


Assuntos
Anemia Falciforme/complicações , Anticorpos/toxicidade , Antígenos CD40/agonistas , Inflamação/etiologia , Hepatopatias/etiologia , Anemia Falciforme/sangue , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/imunologia , Animais , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Etanercepte/farmacologia , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/imunologia , Hemólise , Hemopexina/farmacologia , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/prevenção & controle , Mediadores da Inflamação/sangue , Hepatopatias/sangue , Hepatopatias/imunologia , Hepatopatias/prevenção & controle , Camundongos Transgênicos , Inibidores do Fator de Necrose Tumoral/farmacologia , Disfunção Ventricular Direita/sangue , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/imunologia
20.
PLoS One ; 16(9): e0257061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34478473

RESUMO

A new method for hemoglobin (Hb) deoxygenation, in suspension or within red blood cells (RBCs) is described using the commercial enzyme product, EC-Oxyrase®. The enzymatic deoxygenation method has several advantages over established deoxygenation methodologies, such as avoiding side reactions that produce methemoglobin (metHb), thus eliminating the need for an inert deoxygenation gas and airtight vessel, and facilitates easy re-oxygenation of Hb/RBCs by washing with a buffer that contains dissolved oxygen (DO). The UV-visible spectra of deoxyHb and metHb purified from human RBCs using three different preparation methods (sodium dithionite [to produce deoxyHb], sodium nitrite [to produce metHb], and EC-Oxyrase® [to produce deoxyHb]) show the high purity of deoxyHb prepared using EC-Oxyrase® (with little to no metHb or hemichrome production from side reactions). The oxyHb deoxygenation time course of EC-Oxyrase® follows first order reaction kinetics. The paramagnetic characteristics of intracellular Hb in RBCs were compared using Cell Tracking Velocimetry (CTV) for healthy and sickle cell disease (SCD) donors and oxygen equilibrium curves show that the function of healthy RBCs is unchanged after EC-Oxyrase® treatment. The results confirm that this enzymatic approach to deoxygenation produces pure deoxyHb, can be re-oxygenated easily, prepared aerobically and has similar paramagnetic mobility to existing methods of producing deoxyHb and metHb.


Assuntos
Hemoglobinas/análise , Magnetismo , Oxiemoglobinas/análise , Anemia Falciforme , Feminino , Humanos , Masculino , Metemoglobina/análise , Oxigênio/análise , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA