Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Osteoarthritis Cartilage ; 32(6): 702-712, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447631

RESUMO

OBJECTIVE: To investigate the feasibility of using neutron tomography to gain new knowledge of human articular cartilage degeneration in osteoarthritis (OA). Different sample preparation techniques were evaluated to identify maximum intra-tissue contrast. DESIGN: Human articular cartilage samples from 14 deceased donors (18-75 years, 9 males, 5 females) and 4 patients undergoing total knee replacement due to known OA (all female, 61-75 years) were prepared using different techniques: control in saline, treated with heavy water saline, fixed and treated in heavy water saline, and fixed and dehydrated with ethanol. Neutron tomographic imaging (isotropic voxel sizes from 7.5 to 13.5 µm) was performed at two large scale facilities. The 3D images were evaluated for gradients in hydrogen attenuation as well as compared to images from absorption X-ray tomography, magnetic resonance imaging, and histology. RESULTS: Cartilage was distinguishable from background and other tissues in neutron tomographs. Intra-tissue contrast was highest in heavy water-treated samples, which showed a clear gradient from the cartilage surface to the bone interface. Increased neutron flux or exposure time improved image quality but did not affect the ability to detect gradients. Samples from older donors showed high variation in gradient profile, especially from donors with known OA. CONCLUSIONS: Neutron tomography is a viable technique for specialized studies of cartilage, particularly for quantifying properties relating to the hydrogen density of the tissue matrix or water movement in the tissue.


Assuntos
Cartilagem Articular , Humanos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Pessoa de Meia-Idade , Feminino , Adulto , Idoso , Masculino , Adolescente , Adulto Jovem , Estudos de Viabilidade , Osteoartrite do Joelho/diagnóstico por imagem , Tomografia/métodos , Imageamento por Ressonância Magnética/métodos , Nêutrons , Imageamento Tridimensional/métodos
2.
FASEB J ; 37(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37219456

RESUMO

Achilles tendon rupture is a common debilitating medical condition. The healing process is slow and can be affected by heterotopic ossification (HO), which occurs when pathologic bone-like tissue is deposited instead of the soft collagenous tendon tissue. Little is known about the temporal and spatial progression of HO during Achilles tendon healing. In this study we characterize HO deposition, microstructure, and location at different stages of healing in a rat model. We use phase contrast-enhanced synchrotron microtomography, a state-of-the-art technique that allows 3D imaging at high-resolution of soft biological tissues without invasive or time-consuming sample preparation. The results increase our understanding of HO deposition, from the early inflammatory phase of tendon healing, by showing that the deposition is initiated as early as one week after injury in the distal stump and mostly growing on preinjury HO deposits. Later, more deposits form first in the stumps and then all over the tendon callus, merging into large, calcified structures, which occupy up to 10% of the tendon volume. The HOs were characterized by a looser connective trabecular-like structure and a proteoglycan-rich matrix containing chondrocyte-like cells with lacunae. The study shows the potential of 3D imaging at high-resolution by phase-contrast tomography to better understand ossification in healing tendons.


Assuntos
Tendão do Calcâneo , Ossificação Heterotópica , Animais , Ratos , Cicatrização , Osteogênese , Osso e Ossos
3.
PLoS Comput Biol ; 19(4): e1010698, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37083675

RESUMO

Multicellularity has evolved several independent times over the past hundreds of millions of years and given rise to a wide diversity of complex life. Recent studies have found that large differences in the fundamental structure of early multicellular life cycles can affect fitness and influence multicellular adaptation. Yet, there is an underlying assumption that at some scale or categorization multicellular life cycles are similar in terms of their adaptive potential. Here, we consider this possibility by exploring adaptation in a class of simple multicellular life cycles of filamentous organisms that only differ in one respect, how many daughter filaments are produced. We use mathematical models and evolutionary simulations to show that despite the similarities, qualitatively different mutations fix. In particular, we find that mutations with a tradeoff between cell growth and group survival, i.e. "selfish" or "altruistic" traits, spread differently. Specifically, altruistic mutations more readily spread in life cycles that produce few daughters while in life cycles producing many daughters either type of mutation can spread depending on the environment. Our results show that subtle changes in multicellular life cycles can fundamentally alter adaptation.


Assuntos
Estágios do Ciclo de Vida , Modelos Teóricos , Animais , Evolução Biológica , Aclimatação , Fenótipo
5.
Physiol Plant ; 176(3): e14370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818570

RESUMO

With climate change, droughts are expected to be more frequent and severe, severely impacting plant biomass and quality. Here, we show that overexpressing the Arabidopsis gene AtFtsHi3 (FtsHi3OE) enhances drought-tolerant phenotypes without compromising plant growth. AtFtsHi3 encodes a chloroplast envelope pseudo-protease; knock-down mutants (ftshi3-1) are found to be drought tolerant but exhibit stunted growth. Altered AtFtsHi3 expression therefore leads to drought tolerance, while only diminished expression of this gene leads to growth retardation. To understand the underlying mechanisms of the enhanced drought tolerance, we compared the proteomes of ftshi3-1 and pFtsHi3-FtsHi3OE (pFtsHi3-OE) to wild-type plants under well-watered and drought conditions. Drought-related processes like osmotic stress, water transport, and abscisic acid response were enriched in pFtsHi3-OE and ftshi3-1 mutants following their enhanced drought response compared to wild-type. The knock-down mutant ftshi3-1 showed an increased abundance of HSP90, HSP93, and TIC110 proteins, hinting at a potential downstream role of AtFtsHi3 in chloroplast pre-protein import. Mathematical modeling was performed to understand how variation in the transcript abundance of AtFtsHi3 can, on the one hand, lead to drought tolerance in both overexpression and knock-down lines, yet, on the other hand, affect plant growth so differently. The results led us to hypothesize that AtFtsHi3 may form complexes with at least two other protease subunits, either as homo- or heteromeric structures. Enriched amounts of AtFtsH7/9, AtFtsH11, AtFtsH12, and AtFtsHi4 in ftshi3-1 suggest a possible compensation mechanism for these proteases in the hexamer.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Secas , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Plastídeos/genética , Resistência à Seca
6.
Cell Tissue Bank ; 25(1): 27-37, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36843158

RESUMO

Optimal time spans in homograft procurement are still debatable among tissue banks and needs to be further investigated. Cell viability decreases at longer preparation intervals, but the effect on collagen and elastic fibers has not been investigated to the same extent. These fibers are of importance to the homograft elasticity and strength. The objective of this study was to analyze the mechanical properties of homograft tissue at different time spans in the procurement process. Ten aortic homografts were collected at the Tissue Bank in Lund. Twelve samples were obtained from each homograft, cryopreserved in groups of three after 2-4 days, 7-9 days, 28-30 days, and 60-62 days in antibiotic decontamination. Mechanical testing was performed with uniaxial tensile tests, calculating elastic modulus, yield stress and energy at yield stress. Two randomly selected samples were assessed with light microscopy. Procurement generated a total of 120 samples, with 30 samples in each time group. Elastic modulus and yield stress was significantly higher in samples cryopreserved after 2-4 days (2.7 MPa (2.5-5.0) and 0.78 MPa (0.68-1.0)) compared to 7-9 days (2.2 MPa (2.0-2.6) and 0.53 MPa (0.46-0.69)), p = 0.008 and 0.011 respectively. Light microscopy did not show any difference in collagen and elastin at different time spans. There was a significant decrease in elastic modulus and yield stress after 7 days of decontamination at 4 °C compared to 2-4 days. This could indicate some deterioration of elastin and collagen at longer decontamination intervals. Clinical significance of these findings remains to be clarified.


Assuntos
Criopreservação , Elastina , Transplante Homólogo , Aloenxertos , Colágeno
7.
PLoS Comput Biol ; 18(6): e1009398, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35657996

RESUMO

Abnormal loading of the knee due to injuries or obesity is thought to contribute to the development of osteoarthritis (OA). Small animal models have been used for studying OA progression mechanisms. However, numerical models to study cartilage responses under dynamic loading in preclinical animal models have not been developed. Here we present a musculoskeletal finite element model of a rat knee joint to evaluate cartilage biomechanical responses during a gait cycle. The rat knee joint geometries were obtained from a 3-D MRI dataset and the boundary conditions regarding loading in the joint were extracted from a musculoskeletal model of the rat hindlimb. The fibril-reinforced poroelastic (FRPE) properties of the rat cartilage were derived from data of mechanical indentation tests. Our numerical results showed the relevance of simulating anatomical and locomotion characteristics in the rat knee joint for estimating tissue responses such as contact pressures, stresses, strains, and fluid pressures. We found that the contact pressure and maximum principal strain were virtually constant in the medial compartment whereas they showed the highest values at the beginning of the gait cycle in the lateral compartment. Furthermore, we found that the maximum principal stress increased during the stance phase of gait, with the greatest values at midstance. We anticipate that our approach serves as a first step towards investigating the effects of gait abnormalities on the adaptation and degeneration of rat knee joint tissues and could be used to evaluate biomechanically-driven mechanisms of the progression of OA as a consequence of joint injury or obesity.


Assuntos
Marcha , Articulação do Joelho , Animais , Fenômenos Biomecânicos , Cartilagem , Análise de Elementos Finitos , Marcha/fisiologia , Articulação do Joelho/fisiologia , Obesidade , Ratos
8.
PLoS Comput Biol ; 17(2): e1008636, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33556080

RESUMO

Mechano-regulation during tendon healing, i.e. the relationship between mechanical stimuli and cellular response, has received more attention recently. However, the basic mechanobiological mechanisms governing tendon healing after a rupture are still not well-understood. Literature has reported spatial and temporal variations in the healing of ruptured tendon tissue. In this study, we explored a computational modeling approach to describe tendon healing. In particular, a novel 3D mechano-regulatory framework was developed to investigate spatio-temporal evolution of collagen content and orientation, and temporal evolution of tendon stiffness during early tendon healing. Based on an extensive literature search, two possible relationships were proposed to connect levels of mechanical stimuli to collagen production. Since literature remains unclear on strain-dependent collagen production at high levels of strain, the two investigated production laws explored the presence or absence of collagen production upon non-physiologically high levels of strain (>15%). Implementation in a finite element framework, pointed to large spatial variations in strain magnitudes within the callus tissue, which resulted in predictions of distinct spatial distributions of collagen over time. The simulations showed that the magnitude of strain was highest in the tendon core along the central axis, and decreased towards the outer periphery. Consequently, decreased levels of collagen production for high levels of tensile strain were shown to accurately predict the experimentally observed delayed collagen production in the tendon core. In addition, our healing framework predicted evolution of collagen orientation towards alignment with the tendon axis and the overall predicted tendon stiffness agreed well with experimental data. In this study, we explored the capability of a numerical model to describe spatial and temporal variations in tendon healing and we identified that understanding mechano-regulated collagen production can play a key role in explaining heterogeneities observed during tendon healing.


Assuntos
Tendão do Calcâneo/fisiologia , Tendão do Calcâneo/fisiopatologia , Regeneração , Traumatismos dos Tendões/terapia , Tendão do Calcâneo/lesões , Animais , Fenômenos Biomecânicos , Colágeno/metabolismo , Simulação por Computador , Elasticidade , Análise de Elementos Finitos , Imageamento Tridimensional , Masculino , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Ruptura , Estresse Mecânico , Resistência à Tração , Viscosidade , Cicatrização/fisiologia
9.
J Musculoskelet Neuronal Interact ; 22(2): 212-234, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642701

RESUMO

OBJECTIVE: Characterise the spatiotemporal trabecular and cortical bone responses to complete spinal cord injury (SCI) in young rats. METHODS: 8-week-old male Wistar rats received T9-transection SCI and were euthanised 2-, 6-, 10- or 16-weeks post-surgery. Outcome measures were assessed using micro-computed tomography, mechanical testing, serum markers and Fourier-transform infrared spectroscopy. RESULTS: The trabecular and cortical bone responses to SCI are site-specific. Metaphyseal trabecular BV/TV was 59% lower, characterised by fewer and thinner trabeculae at 2-weeks post-SCI, while epiphyseal BV/TV was 23% lower with maintained connectivity. At later-time points, metaphyseal BV/TV remained unchanged, while epiphyseal BV/TV increased. The total area of metaphyseal and mid-diaphyseal cortical bone were lower from 2-weeks and between 6- and 10-weeks post-SCI, respectively. This suggested that SCI-induced bone changes observed in the rat model were not solely attributable to bone loss, but also to suppressed bone growth. No tissue mineral density differences were observed at any time-point, suggesting that decreased whole-bone mechanical properties were primarily the result of changes to the spatial distribution of bone. CONCLUSION: Young SCI rat trabecular bone changes resemble those observed clinically in adult and paediatric SCI, while cortical bone changes resemble paediatric SCI only.


Assuntos
Densidade Óssea , Traumatismos da Medula Espinal , Animais , Osso e Ossos , Humanos , Masculino , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/diagnóstico por imagem , Microtomografia por Raio-X
10.
Curr Osteoporos Rep ; 19(6): 676-687, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773211

RESUMO

PURPOSE OF REVIEW: Statistical models of shape and appearance have increased their popularity since the 1990s and are today highly prevalent in the field of medical image analysis. In this article, we review the recent literature about how statistical models have been applied in the context of osteoporosis and fracture risk estimation. RECENT FINDINGS: Recent developments have increased their ability to accurately segment bones, as well as to perform 3D reconstruction and classify bone anatomies, all features of high interest in the field of osteoporosis and fragility fractures diagnosis, prevention, and treatment. An increasing number of studies used statistical models to estimate fracture risk in retrospective case-control cohorts, which is a promising step towards future clinical application. All the reviewed application areas made considerable steps forward in the past 5-6 years. Heterogeneities in validation hinder a thorough comparison between the different methods and represent one of the future challenges to be addressed to reach clinical implementation.


Assuntos
Modelos Estatísticos , Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/diagnóstico por imagem , Tomada de Decisão Clínica , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Período Pré-Operatório
11.
J Bone Miner Metab ; 38(3): 289-298, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31807903

RESUMO

INTRODUCTION: The composite nature of bone as a material governs its structure and mechanical behavior. How the collagenous matrix mineralizes, in terms of both mineral deposition and structure of the mineral crystals, is highly interesting when trying to elucidate the complex structural changes that occur during bone growth and maturation. We have previously looked at mineral deposition and structural evolution of the collagenous matrix, linking both to changes in mechanics. The purpose of this study was to provide specific information on changes in crystal size and organization as a function of growth and maturation. MATERIALS AND METHODS: Using micro-computed tomography (µCT) and micro-focused scanning small-angle X-ray scattering (SAXS) we investigated cortical bone in two orthogonal directions relative to the long axis of the humeri of New Zealand White rabbits spanning from new-born to 6-months of age. We also investigated the changes with tissue age by looking at radial profiles of osteonal structures in the 6-months old rabbits. The findings were compared to our previous compositional, structural and mechanical data on the same sample cohort. RESULTS: µCT showed a continuous mineral deposition up until 3-months of age, whilst the SAXS data showed an increase in both crystal thickness and degree of orientation up until 6-months of age. The osteonal profiles showed no statistically significant changes in crystal thickness. CONCLUSIONS: Comparison to previously collected mechanical data suggests that changes are not only explained by amount of mineral in the tissue but also by the crystal dimensions.


Assuntos
Calcificação Fisiológica/fisiologia , Osso Cortical/crescimento & desenvolvimento , Envelhecimento/fisiologia , Animais , Densidade Óssea , Feminino , Imageamento Tridimensional , Coelhos , Espalhamento a Baixo Ângulo , Microtomografia por Raio-X
12.
Acta Orthop ; 91(2): 126-132, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31680611

RESUMO

Background and purpose - Targeted delivery of drugs is important to achieve efficient local concentrations and reduce systemic side effects. We hypothesized that locally implanted synthetic hydroxyapatite (HA) particles can act as a recruiting moiety for systemically administered drugs, leading to targeted drug accretion.Methods - Synthetic HA particles were implanted ectopically in a muscle pouch in rats, and the binding of systemically circulating drugs such as zoledronic acid (ZA), tetracycline and 18F-fluoride (18F) was studied. The local biological effect was verified in an implant integration model in rats, wherein a hollow implant was filled with synthetic HA particles and the animals were given systemic ZA, 2-weeks post-implantation. The effect of HA particle size on drug binding and the possibility of reloading HA particles were also evaluated in the muscle pouch.Results - The systemically administered biomolecules (ZA, tetracycline and 18F) all sought the HA moiety placed in the muscle pouch. Statistically significant higher peri-implant bone volume and peak force were observed in the implant containing HA particles compared with the empty implant. After a single injection of ZA at 2 weeks, micro HA particles showed a tendency to accumulate more 14C-zoledronic acid (14C-ZA) than nano-HA particles in the muscle pouch. HA particles could be reloaded when ZA was given again at 4 weeks, showing increased 14C-ZA accretion by 73% in microparticles and 77% in nanoparticles.Interpretation - We describe a novel method of systemic drug loading resulting in targeted accretion in locally implanted particulate HA, thereby biologically activating the material.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Sistemas de Liberação de Medicamentos , Durapatita/metabolismo , Ácido Zoledrônico/administração & dosagem , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Conservadores da Densidade Óssea/farmacocinética , Materiais Revestidos Biocompatíveis , Portadores de Fármacos , Fluoretos/administração & dosagem , Fluoretos/farmacocinética , Implantes Experimentais , Masculino , Tamanho da Partícula , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ratos Sprague-Dawley , Tetraciclina/administração & dosagem , Tetraciclina/farmacocinética , Ácido Zoledrônico/farmacocinética
13.
FASEB J ; 32(5): 2507-2518, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29295862

RESUMO

Changes in bone matrix composition are frequently found with bone diseases and may be associated with increased fracture risk. Bone is rich in the trace element zinc. Zinc was established to play a significant role in the growth, development, and maintenance of healthy bones; however, the mechanisms underlying zinc effects on the integrity of the skeleton are poorly understood. Here, we show that the zinc receptor (ZnR)/Gpr39 is required for normal bone matrix deposition by osteoblasts. Initial analysis showed that Gpr39-deficient ( Gpr39-/-) mice had weaker bones as a result of altered bone composition. Fourier transform infrared spectroscopy analysis showed high mineral-to-matrix ratios in the bones of Gpr39-/- mice. Histologic analysis showed abnormally high numbers of active osteoblasts but normal osteoclast numbers on the surfaces of bones from Gpr39-/- mice. Furthermore, Gpr39-/- osteoblasts had disorganized matrix deposition in vitro with cultures exhibiting abnormally low collagen and high mineral contents, findings that demonstrate a cell-intrinsic role for ZnR/Gpr39 in these cells. We show that both collagen synthesis and deposition by Gpr39-/- osteoblasts are perturbed. Finally, the expression of the zinc transporter Zip13 and a disintegrin and metalloproteinase with thrombospondin motifs family of zinc-dependent metalloproteases that regulate collagen processing was downregulated in Gpr39-/- osteoblasts. Altogether, our results suggest that zinc sensing by ZnR/Gpr39 affects the expression levels of zinc-dependent enzymes in osteoblasts and regulates collagen processing and deposition.-Jovanovic, M., Schmidt, F. N., Guterman-Ram, G., Khayyeri, H., Hiram-Bab, S., Orenbuch, A., Katchkovsky, S., Aflalo, A., Isaksson, H., Busse, B., Jähn, K., Levaot, N. Perturbed bone composition and integrity with disorganized osteoblast function in zinc receptor/Gpr39-deficient mice.


Assuntos
Densidade Óssea , Matriz Óssea/metabolismo , Osteoblastos/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Animais , Matriz Óssea/patologia , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Transporte de Cátions/genética , Colágeno/biossíntese , Colágeno/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Receptores Acoplados a Proteínas G/metabolismo
15.
Int J Mol Sci ; 20(16)2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426504

RESUMO

In idiopathic pulmonary fibrosis (IPF) structural properties of the extracellular matrix (ECM) are altered and influence cellular responses through cell-matrix interactions. Scaffolds (decellularized tissue) derived from subpleural healthy and IPF lungs were examined regarding biomechanical properties and ECM composition of proteins (the matrisome). Scaffolds were repopulated with healthy fibroblasts cultured under static stretch with heavy isotope amino acids (SILAC), to examine newly synthesized proteins over time. IPF scaffolds were characterized by increased tissue density, stiffness, ultimate force, and differential expressions of matrisome proteins compared to healthy scaffolds. Collagens, proteoglycans, and ECM glycoproteins were increased in IPF scaffolds, however while specific basement membrane (BM) proteins such as laminins and collagen IV were decreased, nidogen-2 was also increased. Findings were confirmed with histology, clearly showing a disorganized BM. Fibroblasts produced scaffold-specific proteins mimicking preexisting scaffold composition, where 11 out of 20 BM proteins were differentially expressed, along with increased periostin and proteoglycans production. We demonstrate how matrisome changes affect fibroblast activity using novel approaches to study temporal differences, where IPF scaffolds support a disorganized BM and upregulation of disease-associated proteins. These matrix-directed cellular responses emphasize the IPF matrisome and specifically the BM components as important factors for disease progression.


Assuntos
Proteínas da Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibrose Pulmonar Idiopática/genética , Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão Celular/genética , Colágeno/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Glicoproteínas/genética , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Laminina/genética , Proteoglicanas/genética , Proteômica
16.
J Struct Biol ; 199(3): 209-215, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28760694

RESUMO

Collagen is the most prominent protein in biological tissues. Tissue fixation is often required for preservation or sectioning of the tissue. This may affect collagen nanostructure and potentially provide incorrect information when analyzed after fixation. We aimed to unravel the effect of 1) ethanol and formalin fixation and 2) 24h air-dehydration on the organization and structure of collagen fibers at the nano-scale using small and wide angle X-ray scattering. Samples were divided into 4 groups: ethanol fixed, formalin fixed, and two untreated sample groups. Samples were allowed to air-dehydrate in handmade Kapton pockets during the measurements (24h) except for one untreated group. Ethanol fixation affected the collagen organization and nanostructure substantially and during 24h of dehydration dramatic changes were evident. Formalin fixation had minor effects on the collagen organization but after 12h of air-dehydration the spatial variation increased substantially, not evident in the untreated samples. Generally, collagen shrinkage and loss of alignment was evident in all samples during 24h of dehydration but the changes were subtle in all groups except the ethanol fixed samples. This study shows that tissue fixation needs to be chosen carefully in order to preserve the features of interest in the tissue.


Assuntos
Tendão do Calcâneo/ultraestrutura , Colágeno/ultraestrutura , Fixação de Tecidos/métodos , Tendão do Calcâneo/química , Animais , Colágeno/química , Desidratação , Etanol/química , Feminino , Formaldeído/química , Nanoestruturas/ultraestrutura , Ratos Sprague-Dawley , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
17.
J Anat ; 231(5): 708-717, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28786101

RESUMO

The histomorphometric properties of the subtrochanteric femoral region have rarely been investigated. The aim of this study was to investigate the age-associated variations and regional differences of histomorphometric and osteocytic properties in the cortical bone of the subtrochanteric femoral shaft, and the association between osteocytic and histological cortical bone parameters. Undecalcified histological sections of the subtrochanteric femoral shaft were obtained from cadavers (n = 20, aged 18-82 years, males). They were cut and stained using modified Masson-Goldner stain. Histomorphometric parameters of cortical bone were analysed with ×50 and ×100 magnification after identifying cortical bone boundaries using our previously validated method. Within cortical bone areas, only complete osteons with typical concentric lamellae and cement line were selected and measured. Osteocytic parameters of cortical bone were analyzed under phase contrast microscopy and epifluorescence within microscopic fields (0.55 mm2 for each). The cortical widths of the medial and lateral quadrants were significantly higher than other quadrants (P < 0.01). Osteonal area per cortical bone area was lower and cortical porosities were higher in the posterior quadrant than in the other quadrants (P < 0.05). Osteocyte lacunar number per cortical bone area was found higher in the young subjects (≤ 50 years) than in the older ones (> 50 years) both before and after adjustments for body height and weight (P < 0.05). Moreover, significant but low correlations were found between the cortical bone and osteocytic parameters (0.20 ≤ R2  ≤ 0.35, P < 0.05). It can be concluded that in healthy males, the cortical histomorphometric parameters differ between the anatomical regions of the subtrochanteric femoral shaft, and are correlated with the osteocytic parameters from the same site. These findings may be of use when discussing mechanisms that predispose patients to decreasing bone strength.


Assuntos
Osso Cortical/anatomia & histologia , Fêmur/anatomia & histologia , Osteócitos/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Cadáver , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
J Struct Biol ; 195(3): 337-344, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27417019

RESUMO

The macro- and micro-features of bone can be assessed by using imaging methods. However, nano- and molecular features require more detailed characterization, such as use of e.g., vibrational spectroscopy and X-ray scattering. Nano- and molecular features also affect the mechanical competence of bone tissue. The aim of the present study was to reveal the effects of mineralization and its alterations on the mineral crystal scale, by investigating the spatial variation of molecular composition and mineral crystal structure across the cross-section of femur diaphyses in young rats, and healthy and osteoporotic mature rats (N=5). Fourier transform infrared spectroscopy and scanning small- and wide-angle X-ray scattering (SAXS/WAXS) techniques with high spatial resolution were used at identical locations over the whole cross-section. This allowed quantification of point-by-point information about the spatial distribution of mineral crystal volume. All measured parameters (crystal dimensions, degree of orientation and predominant orientation) varied across the cortex. Specifically, the crystal dimensions were lower in the central cortex than in the endosteal and periosteal regions. Mineral crystal orientation followed the cortical circumference in the periosteal and endosteal regions, but was less well-oriented in the central regions. Central cortex is formed rapidly during development through endochondral ossification. Since rats possess no osteonal remodeling, this bone remains (until old age). Significant linear correlations were observed between the dimensional and organizational parameters, e.g., between crystal length and degree of orientation (R(2)=0.83, p<0.001). Application of SAXS/WAXS provides valuable information on bone nanostructure and its constituents, effects of diseases and, prospectively, mechanical competence.


Assuntos
Fêmur/ultraestrutura , Animais , Densidade Óssea , Feminino , Ratos Sprague-Dawley , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
19.
Calcif Tissue Int ; 99(1): 76-87, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26914607

RESUMO

Despite the vast amount of studies focusing on bone nanostructure that have been performed for several decades, doubts regarding the detailed structure of the constituting hydroxyapatite crystal still exist. Different experimental techniques report somewhat different sizes and locations, possibly due to different requirements for the sample preparation. In this study, small- and wide-angle X-ray scattering is used to investigate the nanostructure of femur samples from young adult ovine, bovine, porcine, and murine cortical bone, including three different orthogonal directions relative to the long axis of the bone. The radially averaged scattering from all samples reveals a remarkable similarity in the entire q range, which indicates that the nanostructure is essentially the same in all species. Small differences in the data from different directions confirm that the crystals are elongated in the [001] direction and that this direction is parallel to the long axis of the bone. A model consisting of thin plates is successfully employed to describe the scattering and extract the plate thicknesses, which are found to be in the range of 20-40 Å for most samples but 40-60 Å for the cow samples. It is demonstrated that the mineral plates have a large degree of polydispersity in plate thickness. Additionally, and equally importantly, the scattering data and the model are critically evaluated in terms of model uncertainties and overall information content.


Assuntos
Calcificação Fisiológica/fisiologia , Osso Cortical/ultraestrutura , Envelhecimento , Animais , Bovinos , Fêmur/patologia , Espalhamento de Radiação , Ovinos , Suínos , Difração de Raios X/métodos
20.
J Acoust Soc Am ; 140(3): 1931, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27914413

RESUMO

Trabecular bone samples are traditionally embedded and polished for scanning acoustic microscopy (SAM). The effect of sample processing, including dehydration, on the acoustic impedance of bone is unknown. In this study, acoustic impedance of human trabecular bone samples (n = 8) was experimentally assessed before (fresh) and after embedding using SAM and two-dimensional (2-D) finite-difference time domain simulations. Fresh samples were polished with sandpapers of different grit (P1000, P2500, and P4000). Experimental results indicated that acoustic impedance of samples increased significantly after embedding [mean values 3.7 MRayl (fresh), 6.1 MRayl (embedded), p < 0.001]. After polishing with different papers, no significant changes in acoustic impedance were found, even though higher mean values were detected after polishing with finer (P2500 and P4000) papers. A linear correlation (r = 0.854, p < 0.05) was found between the acoustic impedance values of embedded and fresh bone samples polished using P2500 SiC paper. In numerical simulations dehydration increased the acoustic impedance of trabecular bone (38%), whereas changes in surface roughness of bone had a minor effect on the acoustic impedance (-1.56%/0.1 µm). Thereby, the numerical simulations corroborated the experimental findings. In conclusion, acoustic impedance measurement of fresh trabecular bone is possible and may provide realistic material values similar to those of living bone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA