Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 25(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046081

RESUMO

GPR6 is an orphan G protein-coupled receptor that has been associated with the cannabinoid family because of its recognition of a sub-set of cannabinoid ligands. The high abundance of GPR6 in the central nervous system, along with high constitutive activity and a link to several neurodegenerative diseases make GPR6 a promising biological target. In fact, diverse research groups have demonstrated that GPR6 represents a possible target for the treatment of neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Several patents have claimed the use of a wide range of pyrazine derivatives as GPR6 inverse agonists for the treatment of Parkinson's disease symptoms and other dyskinesia syndromes. However, the full pharmacological importance of GPR6 has not yet been fully explored due to the lack of high potency, readily available ligands targeting GPR6. The long-term goal of the present study is to develop such ligands. In this paper, we describe our initial steps towards this goal. A human GPR6 homology model was constructed using a suite of computational techniques. This model permitted the identification of unique GPR6 structural features and the exploration of the GPR6 binding crevice. A subset of patented pyrazine analogs were docked in the resultant GPR6 inactive state model to validate the model, rationalize the structure-activity relationships from the reported patents and identify the key residues in the binding crevice for ligand recognition. We will take this structural knowledge into the next phase of GPR6 project, in which scaffold hopping will be used to design new GPR6 ligands.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Sítios de Ligação , Canabinoides/metabolismo , Humanos , Ligantes , Modelos Químicos , Simulação de Dinâmica Molecular , Doenças Neurodegenerativas/metabolismo , Relação Estrutura-Atividade
2.
J Pers Med ; 13(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36836529

RESUMO

Background: Over the past decade, transcriptome profiling has elucidated many pivotal pathways involved in oncogenesis. However, a detailed comprehensive map of tumorigenesis remains an enigma to solve. Propelled research has been devoted to investigating the molecular drivers of clear cell renal cell carcinoma (ccRCC). To add another piece to the puzzle, we evaluated the role of anoctamin 4 (ANO4) expression as a potential prognostic biomarker in non-metastasized ccRCC. Methods: A total of 422 ccRCC patients with the corresponding ANO4 expression and clinicopathological data were obtained from The Cancer Genome Atlas Program (TCGA). Differential expression across several clinicopathological variables was performed. The Kaplan-Meier method was used to assess the impact of ANO4 expression on the overall survival (OS), progression-free interval (PFI), disease-free interval (DFI), and disease-specific survival (DSS). Univariate and multivariate Cox logistic regression analyses were conducted to identify independent factors modulating the aforementioned outcomes. Gene set enrichment analysis (GSEA) was used to discern a set of molecular mechanisms involved in the prognostic signature. Tumor immune microenvironment was estimated using xCell. Results: ANO4 expression was upregulated in tumor samples compared to normal kidney tissue. Albeit the latter finding, low ANO4 expression is associated with advanced clinicopathological variables such as tumor grade, stage, and pT. In addition, low ANO4 expression is linked to shorter OS, PFI, and DSS. Multivariate Cox logistic regression analysis identified ANO4 expression as an independent prognostic variable in OS (HR: 1.686, 95% CI: 1.120-2.540, p = 0.012), PFI (HR: 1.727, 95% CI: 1.103-2.704, p = 0.017), and DSS (HR: 2.688, 95% CI: 1.465-4.934, p = 0.001). GSEA identified the following pathways to be enriched within the low ANO4 expression group: epithelial-mesenchymal transition, G2-M checkpoint, E2F targets, estrogen response, apical junction, glycolysis, hypoxia, coagulation, KRAS, complement, p53, myogenesis, and TNF-α signaling via NF-κB pathways. ANO4 expression correlates significantly with monocyte (ρ = -0.1429, p = 0.0033) and mast cell (ρ = 0.1598, p = 0.001) infiltration. Conclusions: In the presented work, low ANO4 expression is portrayed as a potential poor prognostic factor in non-metastasized ccRCC. Further experimental studies should be directed to shed new light on the exact molecular mechanisms involved.

3.
Org Lett ; 22(5): 1878-1882, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32096649

RESUMO

Wheldone (1) was isolated and elucidated from a coculture of Aspergillus fischeri (NRRL 181) and Xylaria flabelliformis (G536), where secondary metabolite biosynthesis was stimulated by antagonism between these fungi. First observed via in situ analysis between these competing fungal cultures, the conditions were scaled to reproducibly generate 1, whose novel structure was elucidated by one- and two-dimensional NMR and mass spectrometry. Compound 1 displayed cytotoxic activity against breast, ovarian, and melanoma cancer cell lines.


Assuntos
Antineoplásicos/química , Ascomicetos/química , Aspergillus/química , Xylariales/química , Antineoplásicos/metabolismo , Técnicas de Cocultura , Espectrometria de Massas , Estrutura Molecular , Metabolismo Secundário , Xylariales/metabolismo
4.
Drug Des Devel Ther ; 10: 2623-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27574401

RESUMO

BACKGROUND: The glyoxalase system including two thiol-dependent enzymes, glyoxalase I (Glo-I) and glyoxalase II, plays an important role in a ubiquitous metabolic pathway involved in cellular detoxification of cytotoxic 2-oxoaldehydes. Tumor cells have high glycolytic activity, leading to increased cellular levels of these toxic metabolites. The increased activity of the detoxification system in cancerous cells makes this pathway a viable target for developing novel anticancer agents. In this study, we examined the potential utility of non-glutathione-based inhibitors of the Glo-I enzyme as novel anticancer drugs. METHODS: Computer-aided drug design techniques, such as customized pharmacophoric features, virtual screening, and flexible docking, were used to achieve the project goals. Retrieved hits were extensively filtered and subsequently docked into the active site of the enzyme. The biological activities of retrieved hits were assessed using an in vitro assay against Glo-I. RESULTS: Since Glo-I is a zinc metalloenzyme, a customized Zn-binding pharmacophoric feature was used to search for selective inhibitors via virtual screening of a small-molecule database. Seven hits were selected, purchased, and biologically evaluated. Three of the seven hits inhibited Glo-I activity, the most effective of which exerted 76.4% inhibition at a concentration of 25 µM. CONCLUSION: We successfully identified a potential Glo-I inhibitor that can serve as a lead compound for further optimization. Moreover, our in silico and experimental results were highly correlated. Hence, the docking protocol adopted in this study may be efficiently employed in future optimization steps.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Lactoilglutationa Liase/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Desenho Assistido por Computador , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Lactoilglutationa Liase/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA