Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38139379

RESUMO

Several studies have demonstrated that, beyond their antithrombotic effects, P2Y12 receptor inhibitors may provide additional off-target effects through different mechanisms. These effects range from the preservation of endothelial barrier function to the modulation of inflammation or stabilization of atherosclerotic plaques, with an impact on different cell types, including endothelial and immune cells. Many P2Y12 inhibitors have been developed, from ticlopidine, the first thienopyridine, to the more potent non-thienopyridine derivatives such as ticagrelor which may promote cardioprotective effects following myocardial infarction (MI) by inhibiting adenosine reuptake through sodium-independent equilibrative nucleoside transporter 1 (ENT1). Adenosine may affect different molecular pathways involved in cardiac fibrosis, such as the Wnt (wingless-type)/beta (ß)-catenin signaling. An early pro-fibrotic response of the epicardium and activation of cardiac fibroblasts with the involvement of Wnt1 (wingless-type family member 1)/ß-catenin, are critically required for preserving cardiac function after acute ischemic cardiac injury. This review discusses molecular signaling pathways involved in cardiac fibrosis post MI, focusing on the Wnt/ß-catenin pathway, and the off-target effect of P2Y12 receptor inhibition. A potential role of ticagrelor was speculated in the early modulation of cardiac fibrosis, thanks to its off-target effect.


Assuntos
Infarto do Miocárdio , Antagonistas do Receptor Purinérgico P2Y , Humanos , Ticagrelor/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , beta Catenina , Infarto do Miocárdio/metabolismo , Adenosina , Pericárdio/metabolismo , Fibrose
2.
Alzheimers Res Ther ; 14(1): 135, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115967

RESUMO

Aquaporin-4 (AQP4) is a channel protein that plays a fundamental role in glymphatic system, a newly described pathway for fluid exchange in the central nervous system, as well as a central figure in a fascinating new theory for the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). In this study, cerebrospinal fluid (CSF) concentration of AQP4, amyloid-ß, total tau and P-tau were determined in 103 CSF samples from patients affected by neurodegenerative dementias (AD and FTD) or psychiatric diseases and 21 controls. Significantly higher levels of AQP4 were found in AD and FTD patients compared to subjects not affected by neurodegenerative diseases, and a significant, positive correlation between AQP4 and total tau levels was found. This evidence may pave the way for future studies focused on the role of this channel protein in the clinical assessment of the glymphatic function and degree of neurodegeneration.


Assuntos
Doença de Alzheimer , Aquaporina 4 , Demência Frontotemporal , Sistema Glinfático , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Aquaporina 4/líquido cefalorraquidiano , Aquaporina 4/metabolismo , Demência Frontotemporal/líquido cefalorraquidiano , Demência Frontotemporal/metabolismo , Sistema Glinfático/metabolismo , Humanos , Doenças Neurodegenerativas/líquido cefalorraquidiano , Doenças Neurodegenerativas/metabolismo , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA