Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Molecules ; 29(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398535

RESUMO

Prismanes have been attracting interest for nearly 50 years because of their geometric symmetry, highly strained structures, and unique applications due to their high carbon densities and bulky structures. Although [3]-, [4]-, and [5]-prismanes have been synthesised, [6]-prismanes and their derivatives remain elusive. Herein, fluorine chemistry, molecular mechanics, molecular orbital package, and density functional theory calculations were used to design and implement the photoisomerisation of octafluoro[2.2]paracyclophane (selected based on the good overlap of its lowest unoccupied molecular orbitals and short distance between the benzene rings) into octafluoro-[6]-prismane. Specifically, a dilute solution of the above precursor in CH3CN/H2O/dimethyl sulfoxide (DMSO) (2:1:8, v/v/v) solution was irradiated with ultraviolet light, with the formation of the desired product confirmed through the use of nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. The product was thermally stable in solution but not under work-up conditions, which complicated the further analysis and single-crystal preparation. The key criteria for successful photoisomerisation were the presence of fluorine substituents in the cyclophane structure and DMSO in the solvent system. A more stable derivative design requires the isolation of prismane products. The proposed fluorination-based synthetic strategy is applicable to developing novel high-strain molecules/materials with three-dimensional skeletons.

2.
Molecules ; 25(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050621

RESUMO

Rare earth elements (RE) are indispensable metallic resources in the production of advanced materials; hence, a cost- and energy-effective recovery process is required to meet the rapidly increasing RE demand. Here, we propose an artificial RE recovery approach that uses a functional silk displaying a RE-recognizing peptide. Using the piggyBac system, we constructed a transgenic silkworm in which one or two copies of the gene coding for the RE-recognizing peptide (Lamp1) was fused with that of the fibroin L (FibL) protein. The purified FibL-Lamp1 fusion protein from the transgenic silkworm was able to recognize dysprosium (Dy3+), a RE, under physiological conditions. This method can also be used with silk from which sericin has been removed. Furthermore, the Dy-recovery ability of this silk was significantly improved by crushing the silk. Our simple approach is expected to facilitate the direct recovery of RE from an actual mixed solution of metal ions, such as seawater and industrial wastewater, under mild conditions without additional energy input.


Assuntos
Bombyx/genética , Disprósio/metabolismo , Peptídeos/química , Proteínas Recombinantes de Fusão/metabolismo , Seda/genética , Animais , Animais Geneticamente Modificados , Disprósio/isolamento & purificação , Fibroínas/genética , Metais Terras Raras/isolamento & purificação , Metais Terras Raras/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Pós , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Seda/química , Seda/metabolismo , Espectrometria por Raios X
3.
Nat Med ; 13(11): 1363-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17952091

RESUMO

Proteoglycans are a family of extracellular macromolecules comprised of glycosaminoglycan chains of a repeated disaccharide linked to a central core protein. Proteoglycans have critical roles in chondrogenesis and skeletal development. The glycosaminoglycan chains found in cartilage proteoglycans are primarily composed of chondroitin sulfate. The integrity of chondroitin sulfate chains is important to cartilage proteoglycan function; however, chondroitin sulfate metabolism in mammals remains poorly understood. The solute carrier-35 D1 (SLC35D1) gene (SLC35D1) encodes an endoplasmic reticulum nucleotide-sugar transporter (NST) that might transport substrates needed for chondroitin sulfate biosynthesis. Here we created Slc35d1-deficient mice that develop a lethal form of skeletal dysplasia with severe shortening of limbs and facial structures. Epiphyseal cartilage in homozygous mutant mice showed a decreased proliferating zone with round chondrocytes, scarce matrices and reduced proteoglycan aggregates. These mice had short, sparse chondroitin sulfate chains caused by a defect in chondroitin sulfate biosynthesis. We also identified that loss-of-function mutations in human SLC35D1 cause Schneckenbecken dysplasia, a severe skeletal dysplasia. Our findings highlight the crucial role of NSTs in proteoglycan function and cartilage metabolism, thus revealing a new paradigm for skeletal disease and glycobiology.


Assuntos
Osso e Ossos/embriologia , Cartilagem/embriologia , Sulfatos de Condroitina/biossíntese , Proteínas de Transporte de Monossacarídeos/fisiologia , Proteínas de Transporte de Nucleotídeos/fisiologia , Animais , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Células Cultivadas , Condrócitos/metabolismo , Condrócitos/patologia , Epífises/embriologia , Epífises/metabolismo , Epífises/patologia , Ossos Faciais/anormalidades , Ossos Faciais/embriologia , Ossos Faciais/metabolismo , Humanos , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Transporte de Monossacarídeos/deficiência , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Nucleotídeos/genética
4.
ACS Appl Mater Interfaces ; 16(8): 10590-10600, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38343039

RESUMO

To inhibit viral infection, it is necessary for the surface of polypropylene (PP), a polymer of significant industrial relevance, to possess biocidal properties. However, due to its low surface energy, PP weakly interacts with other organic molecules. The biocidal effects of quaternary ammonium compounds (QACs) have inspired the development of nonwoven PP fibers with surface-bound quaternary ammonium (QA). Despite this advancement, there is limited knowledge regarding the durability of these coatings against scratching and abrasion. It is hypothesized that the durability could be improved if the thickness of the coating layer were controlled and increased. We herein functionalized PP with three-dimensionally surface-grafted poly(N-benzyl-4-vinylpyridinium bromide) (PBVP) by a simple and rapid method involving graft polymerization and benzylation and examined the influence of different factors on the antiviral effect of the resulting plastic by using a plaque assay. The thickness of the PBVP coating, surface roughness, and amount of QACs, which jointly determine biocidal activity, could be controlled by adjusting the duration and intensity of the ultraviolet irradiation used for grafting. The best-performing sample reduced the viral infection titer of an enveloped model virus (bacteriophage ϕ6) by approximately 5 orders of magnitude after 60 min of contact and retained its antiviral activity after surface polishing-simulated scratching and abrasion, which indicated the localization of QACs across the coating interior. Our method may expand the scope of application to resin plates as well as fibers of PP. Given that the developed approach is not limited to PP and may be applied to other low-surface-energy olefinic polymers such as polyethylene and polybutene, our work paves the way for the fabrication of a wide range of biocidal surfaces for use in diverse environments, helping to prevent viral infection.


Assuntos
Polipropilenos , Polivinil , Compostos de Piridínio , Compostos de Vinila , Viroses , Humanos , Polipropilenos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Polímeros/farmacologia , Antivirais/farmacologia
5.
Bioprocess Biosyst Eng ; 36(9): 1261-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23223911

RESUMO

In the present study, to elucidate mechanisms of growth suppression in YIBO-pdc1/5Δ, we performed carbon metabolic flux analysis under micro-aerobic conditions. Our results indicate that growth suppression of YIBO-pdc1/5Δ is caused by decreased flux to the pentose phosphate pathway, which supplies ribose-5-phosphate, a precursor for histidine synthesis in Sacchar omyces cerevisiae. In addition, significant accumulation of pyruvate was observed in the continuous culture.


Assuntos
Ácido Láctico/biossíntese , Via de Pentose Fosfato , Saccharomyces cerevisiae/metabolismo , Aerobiose/genética , Engenharia Genética , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae/genética
6.
ACS Appl Mater Interfaces ; 15(16): 20398-20409, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36947007

RESUMO

Antiviral coatings that inactivate a broad spectrum of viruses are important in combating the evolution and emergence of viruses. In this study, nano-columnar Cu thin films have been proposed, inspired by cicada wings (which exhibit mechano-bactericidal activity). Nano-columnar thin films of Cu and its oxides were fabricated by the sputtering method, and their antiviral activities were evaluated against envelope-type bacteriophage Φ6 and non-envelope-type bacteriophage Qß. Among all of the fabricated films, Cu thin films showed the highest antiviral activity. The infectious activity of the bacteriophages was reduced by 5 orders of magnitude within 30 min by the Cu thin films, by 3 orders of magnitude by the Cu2O thin films, and by less than 1 order of magnitude by the CuO thin films. After exposure to ambient air for 1 month, the antiviral activity of the Cu2O thin film decreased by 1 order of magnitude; the Cu thin films consistently maintained a higher antiviral activity than the Cu2O thin films. Subsequently, the surface oxidation states of the thin films were analyzed by X-ray photoelectron spectroscopy; Cu thin films exhibited slower oxidation to the CuO than Cu2O thin films. This oxidation resistance could be a characteristic property of nanostructured Cu fabricated by the sputtering method. Finally, the antiviral activity of the nano-columnar Cu thin films against infectious viruses in humans was demonstrated by the binding inhibition of the SARS-CoV-2 spike protein to the angiotensin-converting enzyme 2 receptor within 10 min.


Assuntos
Bacteriófagos , COVID-19 , Humanos , Antivirais/farmacologia , Cobre/farmacologia , Cobre/química , SARS-CoV-2
7.
ACS Appl Bio Mater ; 6(3): 1032-1040, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36780326

RESUMO

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) caused a pandemic in 2019 and reaffirmed the importance of environmental sanitation. To prevent the spread of viral infections, we propose the application of a mesoporous silica (MS)-based virus-inactivating material. MS is typically synthesized using a micellar surfactant template; hence, the intermediate before removal of the surfactant template is expected to have a virus-inactivating activity. MS-CTAC particles filled with cetyltrimethylammonium chloride (CTAC), a cationic surfactant with an alkyl chain length of 16, were used to test this hypothesis. Plaque assays revealed that the MS-CTAC particles inactivated the enveloped bacteriophage φ6 by approximately 4 orders of magnitude after a contact time of 10 min. The particles also indicated a similar inactivation effect on the nonenveloped bacteriophage Qß. In aqueous solution, CTAC loaded on MS-CTAC was released until the equilibrium concentration of loading and release on MS was reached. The released CTAC acted on viruses. Thus, MS is likely a good reservoir for the micellar surfactant. Surfactant readsorption also occurred in the MS particles, and the highest retention rate was observed when micellar surfactants with alkyl chain lengths appropriate for the pore size were used. The paper containing MS-CTAC particles was shown to maintain stable viral inactivation for at least three months in a typical indoor environment. Applying this concept to indoor wallpaper and air-conditioning filters could contribute to the inactivation of viruses in aerosols. These findings open possibilities for mesoporous materials with high surface areas, which can further develop into virus inactivation materials.


Assuntos
COVID-19 , Tensoativos , Humanos , Tensoativos/farmacologia , Inativação de Vírus , SARS-CoV-2 , Cetrimônio , Micelas
8.
Glycobiology ; 22(12): 1731-40, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22833315

RESUMO

In our previous studies, we demonstrated that chimeric molecules of the CMP-sialic acid (CMP-Sia) transporter (CST) and the UDP-galactose (Gal) transporter (UGT) in which the seventh transmembrane helix-containing segment was derived from the CST could transport both CMP-Sia and UDP-Gal and that the CST-derived seventh transmembrane helix segment was sufficient for the chimera to recognize CMP-Sia in the otherwise UGT context. In this study, we continued to more precisely define the submolecular region that is necessary for CMP-Sia recognition, and we demonstrated that the N-terminal half of the seventh transmembrane helix of CST is essential for the CMP-Sia transport mediated by the chimeric transporters. We further showed that Tyr214Gly and Ser216Phe mutations of a chimeric transporter that was capable of transporting both CMP-Sia and UDP-Gal led to the selective loss of CMP-Sia transport activity without affecting UDP-Gal transport activity. Conversely, when a residue in a chimeric transporter that was active for UDP-Gal transport but not CMP-Sia transport was replaced by Tyr, so that Tyr occupied the same position as in the CMP-Sia transporter, the resulting mutant chimera acquired the ability to transport CMP-Sia. These results demonstrated that Tyr214 and Ser216, located in the seventh transmembrane helix of the human CST, are critically important for the recognition of CMP-Sia as a transport substrate. Identification of determinants critical for the discrimination between relevant and irrelevant substrates will advance our understanding of the mechanisms of substrate recognition by nucleotide sugar transporters.


Assuntos
Monofosfato de Citidina/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Transporte de Nucleotídeos/química , Proteínas de Transporte de Nucleotídeos/metabolismo , Motivos de Aminoácidos , Animais , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Galactose/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Mutação de Sentido Incorreto , Proteínas de Transporte de Nucleotídeos/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Tirosina/genética , Difosfato de Uridina/metabolismo
9.
J Biol Chem ; 285(6): 4122-4129, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19948734

RESUMO

Notch is a transmembrane receptor that shares homology with proteins containing epidermal growth factor-like repeats and mediates the cell-cell interactions necessary for many cell fate decisions. In Drosophila, O-fucosyltransferase 1 catalyzes the O-fucosylation of these epidermal growth factor-like repeats. This O-fucose elongates, resulting in an O-linked tetrasaccharide that regulates the signaling activities of Notch. Fucosyltransferases utilize GDP-fucose, which is synthesized in the cytosol, but fucosylation occurs in the lumen of the endoplasmic reticulum (ER) and Golgi. Therefore, GDP-fucose uptake into the ER and Golgi is essential for fucosylation. However, although GDP-fucose biosynthesis is well understood, the mechanisms and intracellular routes of GDP-fucose transportation remain unclear. Our previous study on the Drosophila Golgi GDP-fucose transporter (Gfr), which specifically localizes to the Golgi, suggested that another GDP-fucose transporter(s) exists in Drosophila. Here, we identified Efr (ER GDP-fucose transporter), a GDP-fucose transporter that localizes specifically to the ER. Efr is a multifunctional nucleotide sugar transporter involved in the biosynthesis of heparan sulfate-glycosaminoglycan chains and the O-fucosylation of Notch. Comparison of the fucosylation defects in the N-glycans in Gfr and Efr mutants revealed that Gfr and Efr made distinct contributions to this modification; Gfr but not Efr was crucial for the fucosylation of N-glycans. We also found that Gfr and Efr function redundantly in the O-fucosylation of Notch, although they had different localizations and nucleotide sugar transportation specificities. These results indicate that two pathways for the nucleotide sugar supply, involving two nucleotide sugar transporters with distinct characteristics and distributions, contribute to the O-fucosylation of Notch.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Guanosina Difosfato Fucose/metabolismo , Receptores Notch/metabolismo , Animais , Transporte Biológico , Western Blotting , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Glicosaminoglicanos/biossíntese , Glicosilação , Complexo de Golgi/metabolismo , Imuno-Histoquímica , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Polissacarídeos/metabolismo , Receptores Notch/genética , Transdução de Sinais
10.
Small ; 7(5): 656-64, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21290602

RESUMO

Cellulose, one of the most abundant carbon resources, is degraded by cellulolytic enzymes called cellulases. Cellulases are generally modular proteins with independent catalytic and cellulose-binding domain (CBD) modules and, in some bacteria, catalytic modules are noncovalently assembled on a scaffold protein with CBD to form a giant protein complex called a cellulosome, which efficiently degrades water-insoluble hard materials. In this study, a catalytic module and CBD are independently prepared by recombinant means, and are heterogeneously clustered on streptavidin and on inorganic nanoparticles for the construction of artificial cellulosomes. Heteroclustering of the catalytic module with CBD results in significant improvements in the enzyme's degradation activity for water-insoluble substrates. In particular, the increase of CBD valency in the cluster structure critically enhances the catalytic activity by improving the affinity for substrates, and clustering with multiple CBDs on CdSe nanoparticles generates a 7.2-fold increase in the production of reducing sugars relative to that of the native free enzyme. The multivalent design of substrate-binding domain on clustered cellulases is important for the construction of the artificial cellulosome, and the nanoparticles are an effective scaffold for increasing the valence of CBD in clustered cellulases. A new design is proposed for artificial cellulosomes with multiple CBDs on noncellulosome-derived scaffold structures.


Assuntos
Celulose/química , Nanoestruturas/química , Sítios de Ligação , Celulase/química , Celulase/metabolismo , Celulose/metabolismo , Clonagem Molecular , Estrutura Terciária de Proteína , Termodinâmica
11.
Biosci Biotechnol Biochem ; 75(11): 2260-3, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22056456

RESUMO

For direct and efficient ethanol production from cellulosic materials, we screened optimal cellulases from symbiotic protists of termites through heterologous expression with Saccharomyces cerevisiae. 11 cellulases, belonging to glycoside hydrolase families 5, 7, and 45 endoglucanases (EGs), were confirmed to produce with S. cerevisiae for the first time. A recombinant yeast expressing SM2042B24 EG I was more efficient at degrading carboxylmethyl cellulose than was Trichoderma reesei EG I, a major EG with high cellulolytic activity.


Assuntos
Celulase/química , Celulases/química , Etanol/química , Isópteros/enzimologia , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo , Animais , Carboximetilcelulose Sódica/química , Celulase/biossíntese , Celulase/isolamento & purificação , Celulases/biossíntese , Celulases/isolamento & purificação , Expressão Gênica , Saccharomyces cerevisiae/genética , Via Secretória , Simbiose , Trichoderma/enzimologia
12.
Appl Environ Microbiol ; 76(8): 2556-61, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20173066

RESUMO

Swollenin is a protein from Trichoderma reesei that has a unique activity for disrupting cellulosic materials, and it has sequence similarity to expansins, plant cell wall proteins that have a loosening effect that leads to cell wall enlargement. In this study we cloned a gene encoding a swollenin-like protein, Swo1, from the filamentous fungus Aspergillus fumigatus, and designated the gene Afswo1. AfSwo1 has a bimodular structure composed of a carbohydrate-binding module family 1 (CBM1) domain and a plant expansin-like domain. AfSwo1 was produced using Aspergillus oryzae for heterologous expression and was easily isolated by cellulose-affinity chromatography. AfSwo1 exhibited weak endoglucanase activity toward carboxymethyl cellulose (CMC) and bound not only to crystalline cellulose Avicel but also to chitin, while showing no detectable affinity to xylan. Treatment by AfSwo1 caused disruption of Avicel into smaller particles without any detectable reducing sugar. Furthermore, simultaneous incubation of AfSwo1 with a cellulase mixture facilitated saccharification of Avicel. Our results provide a novel approach for efficient bioconversion of crystalline cellulose into glucose by use of the cellulose-disrupting protein AfSwo1.


Assuntos
Aspergillus fumigatus/enzimologia , Celulose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aspergillus fumigatus/genética , Aspergillus oryzae/genética , Metabolismo dos Carboidratos , Carboximetilcelulose Sódica/metabolismo , Quitina/metabolismo , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Estabilidade Enzimática , Expressão Gênica , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Especificidade por Substrato , Temperatura , Xilanos/metabolismo
13.
Appl Biochem Biotechnol ; 190(2): 645-659, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31422560

RESUMO

Copper (II) oxide nanoparticles (CuO-NPs) have been studied as potential antimicrobial agents, similar to silver or platinum nanoparticles. However, the use of excess NPs is limited by their safety and toxicity in beneficial microflora and human cells. In this study, we evaluated the cytotoxicity of CuO-NPs by coating with a novel cyclic peptide, CuO binding peptide 1 (CuBP1), cyclic-SCATPFSPQVCS, which binds to the surface of CuO-NPs. CuBP1 was identified using biopanning of a T7 phage display system and was found to promote the aggregation of CuO-NPs under mild conditions. The treated CuO-NPs with CuBP1 caused the reduction of the cytotoxicity against Escherichia coli, Lactobacillus helveticus, and five other microorganisms, including bacteria and eukaryotes. Similar effects were also demonstrated against human embryonic kidney (HEK293) cells in vitro. Our findings suggested that the CuO-NPs coated with a surface-binding peptide may have applications as a safe antimicrobial agent without excessive cytotoxic activity against beneficial microflora and human cells. Moreover, a similar tendency may be achieved with other metal particles, such as silver or platinum NPs, by using optimal metal binding peptides.


Assuntos
Anti-Infecciosos/toxicidade , Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Propriedades de Superfície
14.
Sci Rep ; 10(1): 19468, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173124

RESUMO

Lanthanide ions (Ln3+) show similar physicochemical properties in aqueous solutions, wherein they exist as + 3 cations and exhibit ionic radii differences of less than 0.26 Å. A flexible linear peptide lanthanide binding tag (LBT), which recognizes a series of 15 Ln3+, shows an interesting characteristic in binding specificity, i.e., binding affinity biphasically changes with an increase in the atomic number, and shows a greater than 60-fold affinity difference between the highest and lowest values. Herein, by combining experimental and computational investigations, we gain deep insight into the reaction mechanism underlying the specificity of LBT3, an LBT mutant, toward Ln3+. Our results clearly show that LBT3-Ln3+ binding can be divided into three, and the large affinity difference is based on the ability of Ln3+ in a complex to be directly coordinated with a water molecule. When the LBT3 recognizes a Ln3+ with a larger ionic radius (La3+ to Sm3+), a water molecule can interact with Ln3+ directly. This extra water molecule infiltrates the complex and induces dissociation of the Asn5 sidechain (one of the coordinates) from Ln3+, resulting in a destabilizing complex and low affinity. Conversely, with recognition of smaller Ln3+ (Sm3+ to Yb3+), the LBT3 completely surrounds the ions and constructs a stable high affinity complex. Moreover, when the LBT3 recognizes the smallest Ln3+, namely Lu3+, although it completely surrounds Lu3+, an entropically unfavorable phenomenon specifically occurs, resulting in lower affinity than that of Yb3+. Our findings will be useful for the design of molecules that enable the distinction of sub-angstrom size differences.


Assuntos
Cátions/química , Elementos da Série dos Lantanídeos/química , Simulação de Dinâmica Molecular , Peptídeos/química , Sítios de Ligação , Calorimetria/métodos , Cátions/metabolismo , Cristalografia por Raios X , Elementos da Série dos Lantanídeos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Peptídeos/metabolismo , Termodinâmica , Água/química
15.
Appl Microbiol Biotechnol ; 82(5): 883-90, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19122995

RESUMO

Expression of a heterologous L: -lactate dehydrogenase (L: -ldh) gene enables production of optically pure L: -lactate by yeast Saccharomyces cerevisiae. However, the lactate yields with engineered yeasts are lower than those in the case of lactic acid bacteria because there is a strong tendency for ethanol to be competitively produced from pyruvate. To decrease the ethanol production and increase the lactate yield, inactivation of the genes that are involved in ethanol production from pyruvate is necessary. We conducted double disruption of the pyruvate decarboxylase 1 (PDC1) and alcohol dehydrogenase 1 (ADH1) genes in a S. cerevisiae strain by replacing them with the bovine L: -ldh gene. The lactate yield was increased in the pdc1/adh1 double mutant compared with that in the single pdc1 mutant. The specific growth rate of the double mutant was decreased on glucose but not affected on ethanol or acetate compared with in the control strain. The aeration rate had a strong influence on the production rate and yield of lactate in this strain. The highest lactate yield of 0.75 g lactate produced per gram of glucose consumed was achieved at a lower aeration rate.


Assuntos
Álcool Desidrogenase/genética , L-Lactato Desidrogenase , Ácido Láctico/biossíntese , Piruvato Descarboxilase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Animais , Reatores Biológicos/microbiologia , Bovinos , Etanol/metabolismo , Fermentação/genética , Engenharia Genética , Glucose/metabolismo , Microbiologia Industrial/métodos , L-Lactato Desidrogenase/biossíntese , L-Lactato Desidrogenase/genética , Mutagênese , Piruvatos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento
16.
Biomater Sci ; 6(9): 2316-2319, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30019041

RESUMO

Using cationic peptides with tetramethyl orthosilicate, a silica nano-film >100 µm in size with <100 nm thickness was constructed under physiological conditions. Control of silica nucleation speed and location was found to be the dominant factor affecting the ordered architecture. Our approach adds new insight into bottom-up nanomaterial construction and contributes to evaluating the silica mineralization system in living organisms.


Assuntos
Nanoestruturas/química , Peptídeos/química , Dióxido de Silício/química
17.
J Biosci Bioeng ; 126(2): 241-248, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29650365

RESUMO

We reported previously that tobacco plants transformed with the human UDP-galactose transporter 1 gene (hUGT1) had enhanced growth, displayed characteristic traits, and had an increased proportion of galactose (hyper-galactosylation) in the cell wall matrix polysaccharides. Here, we report that hUGT1-transgenic plants have an enhanced hardness. As determined by breaking and bending tests, the leaves and stems of hUGT1-transgenic plants were harder than those of control plants. Transmission electron microscopy revealed that the cell walls of palisade cells in leaves, and those of cortex cells and xylem fibers in stems of hUGT1-transgenic plants, were thicker than those of control plants. The increased amounts of total cell wall materials extracted from the leaves and stems of hUGT1-transgenic plants supported the increased cell wall thickness. In addition, the cell walls of the hUGT1-transgenic plants showed an increased lignin contents, which was supported by the up-regulation of lignin biosynthetic genes. Thus, the heterologous expression of hUGT1 enhanced the accumulation of cell wall materials, which was accompanied by the increased lignin content, resulting in the increased hardness of the leaves and stems of hUGT1-trangenic plants. The enhanced accumulation of cell wall materials might be related to the hyper-galactosylation of cell wall matrix polysaccharides, most notably arabinogalactan, because of the enhanced UDP-galactose transport from the cytosol to the Golgi apparatus by hUGT1, as suggested in our previous report.


Assuntos
Dureza/fisiologia , Proteínas de Transporte de Monossacarídeos/genética , Nicotiana/genética , Plantas Geneticamente Modificadas/fisiologia , Parede Celular/metabolismo , Citosol/metabolismo , Galactanos/metabolismo , Galactose/metabolismo , Complexo de Golgi/metabolismo , Humanos , Lignina/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Polissacarídeos/metabolismo , Nicotiana/fisiologia
18.
Mol Biol Cell ; 14(8): 3482-93, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12925779

RESUMO

UDP-galactose reaches the Golgi lumen through the UDP-galactose transporter (UGT) and is used for the galactosylation of proteins and lipids. Ceramides and diglycerides are galactosylated within the endoplasmic reticulum by the UDP-galactose:ceramide galactosyltransferase. It is not known how UDP-galactose is transported from the cytosol into the endoplasmic reticulum. We transfected ceramide galactosyltransferase cDNA into CHOlec8 cells, which have a defective UGT and no endogenous ceramide galactosyltransferase. Cotransfection with the human UGT1 greatly stimulated synthesis of lactosylceramide in the Golgi and of galactosylceramide in the endoplasmic reticulum. UDP-galactose was directly imported into the endoplasmic reticulum because transfection with UGT significantly enhanced synthesis of galactosylceramide in endoplasmic reticulum membranes. Subcellular fractionation and double label immunofluorescence microscopy showed that a sizeable fraction of ectopically expressed UGT and ceramide galactosyltransferase resided in the endoplasmic reticulum of CHOlec8 cells. The same was observed when UGT was expressed in human intestinal cells that have an endogenous ceramide galactosyltransferase. In contrast, in CHOlec8 singly transfected with UGT 1, the transporter localized exclusively to the Golgi complex. UGT and ceramide galactosyltransferase were entirely detergent soluble and form a complex because they could be coimmunoprecipitated. We conclude that the ceramide galactosyltransferase ensures a supply of UDP-galactose in the endoplasmic reticulum lumen by retaining UGT in a molecular complex.


Assuntos
Retículo Endoplasmático/metabolismo , Glucosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Uridina Difosfato Galactose/metabolismo , Animais , Células Cultivadas , Ceramidas/biossíntese , Clonagem Molecular , Cricetinae , Cricetulus , Ligação Proteica
19.
Nat Commun ; 8: 15670, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28548098

RESUMO

The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ∼6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.

20.
Appl Biochem Biotechnol ; 182(1): 229-237, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27844339

RESUMO

Among the many types of lignocellulosic biomass pretreatment methods, the use of ionic liquids (ILs) is regarded as one of the most promising strategies. In this study, the effects of four kinds of ILs for pretreatment of lignocellulosic biomass such as bagasse, eucalyptus, and cedar were evaluated. In direct ethanol fermentation from biomass incorporated with ILs by cellulase-displaying yeast, 1-butyl-3-methylimidazolium acetate ([Bmim][OAc]) was the most effective IL. The ethanol production and yield from [Bmim][OAc]-pretreated bagasse reached 0.81 g/L and 73.4% of the theoretical yield after fermentation for 96 h. The results prove the initial concept, in which the direct fermentation from lignocellulosic biomass effectively promoted by the pretreatment with IL.


Assuntos
Biocombustíveis , Etanol/metabolismo , Glucose/biossíntese , Imidazóis/química , Líquidos Iônicos/química , Lignina/metabolismo , Xilose/biossíntese , Aspergillus/efeitos dos fármacos , Aspergillus/enzimologia , Biomassa , Cedrus/química , Celulases/metabolismo , Celulose/química , Eucalyptus/química , Fermentação , Proteínas Fúngicas/metabolismo , Imidazóis/farmacologia , Líquidos Iônicos/farmacologia , Cinética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Trichoderma/efeitos dos fármacos , Trichoderma/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA