Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Radioact ; 246: 106845, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35172229

RESUMO

The carbon to hydrogen ratio (C/H ratio, w/w) in plants is a key factor in estimating the amount of hydrogen in the photosynthetic product. The amount of hydrogen calculated from photosynthetic model estimation associated with the C/H ratio is an essential parameter of the estimation model of productivity of organically bound tritium (OBT) by plants. To propose a sophisticated estimation model of OBT by agricultural plants, temporal changes in the C/H ratio of six plant species (Japanese radish, cabbage, orchard grass, paddy field rice, apple, and radish) during their cultivation were investigated for each plant part. The C/H ratio in the plants cultivated in the field and growth chamber generally exceeded 6, which is the value for the primary photosynthetic monosaccharides, such as glucose and fructose (both chemical formulae, C6H12O6). In the vegetative parts (e.g. Japanese radish leaves, cabbage leaves and roots, rice leaves and roots, and radish leaves and fine roots) the C/H ratio fluctuated irregularly or remained constant within an approximate range of 6.6-7.3 during cultivation. The C/H ratio in enlarged organs (e.g. Japanese radish root, rice ear, apple fruit, and radish main root) decreased continuously, approaching 6. These results suggest that the C/H ratio can be generally set as approximately 6.9 except for enlarged organs, in which the ratio may change over time during cultivation, within an approximate range of 6-7.


Assuntos
Hidrogênio , Monitoramento de Radiação , Carbono , Plantas/metabolismo , Trítio/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-33498654

RESUMO

In this study, to get a better understanding in characterizing groundwater and ensure its effective management, the radon concentrations in water samples were measured through Ryukyu limestone in southern Okinawa Island, Japan. Water samples were collected from a limestone cave (Gyokusendo cave, dropping water) and two springs (Ukinju and Komesu, spring water), and the radon concentrations were measured by liquid scintillation counters. The radon concentrations in the samples from the Gyokusendo cave, and Ukinju and Komesu springs were 10 ± 1.3 Bq L-1, 3.2 ± 1.0 Bq L-1, and 3.1 ± 1.1 Bq L-1, respectively. The radon concentrations showed a gradually increasing trend from summer to autumn and decreased during winter. The variation of radon concentrations in the dripping water sample from the Gyokusendo cave showed a lagged response to precipitation changes by approximately 2-3 months. The estimated radon concentrations in the dripping water sample were calculated with the measured radon concentrations from the dripping water obtained during the study period. Based on our results, groundwater in the Gyokusendo cave system was estimated to percolate through the Ryukyu limestone in 7-10 days, and the residence time of groundwater in the soil above Gyokusendo cave was estimated to be approximately 50-80 days. This work makes a valuable contribution to the understanding of groundwater processes in limestone aquifers, which is essential for ensuring groundwater sustainability.


Assuntos
Água Subterrânea , Monitoramento de Radiação , Radônio , Poluentes Radioativos da Água , Ilhas , Japão , Radônio/análise , Água , Poluentes Radioativos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA