Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(29): 13644-13652, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38985450

RESUMO

Herein, we report a new photofunctional Pb-S-based coordination polymer (CP) with the formula [Pb(ATAT)(OAc)]n (ATAT = 3-amino-5-mercapto-1,2,4-triazole, OAc = acetate, CP1). Apart from its photoactive one-dimensional (1D) (-Pb-S-)n chain, CP1 is also composed of another 1D (-Pb-O-)n chain that originates from the coordination with acetate. The coordinated acetate can be exchanged with water (H2O) or dimethyl sulfoxide (DMSO), leading to the formation of a CP1-H2O or CP1-DMSO structure that exhibits a distinct change in optical properties, including a white-to-yellow color change. The structural transformation of CP1 to CP1-H2O and CP1-DMSO, and its subsequent recovery to the original CP1 structure could be controlled by the presence or absence of acetic acid vapor; the transformation was completely reversible. CP1 absorbed light with wavelengths shorter than 390 nm, with an estimated bandgap of 3.18 eV. Density functional theory calculations indicated that the valence band of CP1 is mainly formed by N and S orbitals originating from the ATAT unit, whereas the conduction band is composed of the Pb orbitals. Even without any modification, such as the incorporation of a molecular catalyst, CP1 reduced CO2 into formate under UV light with >99% selectivity.

2.
Angew Chem Int Ed Engl ; 63(24): e202404700, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38577718

RESUMO

The molecular conformation, crystalline morphology, and properties of photochromic organic crystals can be controlled through photoirradiation, making them promising candidates for functional organic materials. However, photochromic porous molecular crystals with a networked framework structure are rare due to the difficulty in maintaining space that allows for photo-induced molecular motion in the crystalline state. This study describes a photo-responsive single crystal based on hydrogen-bonded (H-bonded) network of dihydrodimethylbenzo[e]pyrene derivative 4BDHP. A crystal composed of H-bonded undulate layers, 4BDHP-2, underwent photo-isomerization in the crystalline state due to loose stacking of the layers. Particularly, enantio-pure crystal (S,S)-4BDHP-2 allowed to reveal the structure of the photoisomerized crystal, in which the closed form (4BDHP) and open form (4CPD) were arranged alternately with keeping crystalline periodicity, although side reactions were also implied. The present proof-of-concept system of a photochromic framework that retains crystalline periodicity after photo-isomerization may provide new light-driven porous functional materials.

3.
J Am Chem Soc ; 145(21): 11553-11565, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37202849

RESUMO

Expanded carbohelicenes with structures fused to 15- and 17-benzene were successfully synthesized. Establishing a new synthetic strategy is crucial to realize the development of longer expanded [2,1][n]helicenes with a kekulene-like projection drawing structure. This article describes the sequential integration of the π-elongating Wittig reaction of functionalized phenanthrene units and ring-fusing Yamamoto coupling for the synthesis of [2,1][15]helicenes and [2,1][17]helicenes. X-ray crystallographic structures, photophysical properties, and density functional theory (DFT) calculations revealed the unique characteristics of the synthesized expanded helicenes. Furthermore, because of the high enantiomerization barrier derived from a wide-range intrahelix π-π interaction, the optical resolution of [2,1][17]helicene was successfully achieved, and chiroptical properties such as circular dichroism and circularly polarized luminescence were elucidated for the first time as enantiomers of pristine [2,1][n]helicene core.

4.
J Am Chem Soc ; 145(2): 1031-1039, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36608693

RESUMO

We report here a nanosized "buckytrap", 1, constructed from two bis-zinc(II) expanded-TTF (exTTF) porphyrin subunits. Two forms, 1a and 1b, differing in the axial ligands, H2O vs tetrahydrofuran (THF), were isolated and characterized. Discrete host-guest inclusion complexes are formed upon treatment with fullerenes as inferred from a single-crystal X-ray structural analyses of 1a with C70. The fullerene is found to be encapsulated within the inner pseudohexagonal cavity of 1a. In contrast, the corresponding free-base derivative (2) was found to form infinite ball-and-socket type supramolecular organic frameworks (3D-SOFs) with fullerenes, (2•C60)n or (2•C70)n. This difference is ascribed to the fact that in 1a and 1b the axial positions are blocked by a H2O or THF ligand. Emission spectroscopic studies supported a 1:1 host-guest binding stoichiometry, allowing association constants of (2.0 ± 0.5) × 104 M-1 and (4.3 ± 0.9) × 104 M-1 to be calculated for C60 and C70, respectively. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) studies of solid films of the Zn-complex 1a revealed that the intrinsic charge carrier transport, i.e., pseudo-photoconductivity (ϕ∑µ), increases upon fullerene inclusion (e.g., ϕ∑µ = 1.53 × 10-4 cm2 V-1 s-1 for C60⊂(1a)2 and ϕ∑µ = 1.45 × 10-4 cm2 V-1 s-1 for C70⊂(1a)2 vs ϕ∑µ = 2.49 × 10-5 cm2 V-1 s-1 for 1a) at 298 K. These findings provide support for the notion that controlling the nature of self-assembly supramolecular constructs formed from exTTF-porphyrin dimers through metalation or choice of fullerene can be used to regulate key functional features, including photoconductivity.


Assuntos
Fulerenos , Porfirinas , Fulerenos/química , Porfirinas/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
5.
Chemistry ; 29(14): e202202702, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36520052

RESUMO

A new class of diamino-substituted π-extended phenazine compound was synthesized, and its photophysical properties were investigated. The U-shaped diaminophenazine displayed photoluminescence in solution with moderate quantum yield. The diamino aromatic compound was found applicable to the poly-condensation with formaldehyde to form Tröger's base ladder polymer. The obtained microporous ladder polymer features high CO2 adsorption selectivity against N2 , most likely due to the presence of basic nitrogen atoms in the phenazine rings.

6.
Chemistry ; 29(43): e202301466, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37194616

RESUMO

1,1',10,10'-Biphenothiazine and its S,S,S',S'-tetroxide are diaza[5]helicenes with N-N linkages. Kinetic experiments on racemization together with DFT calculations revealed that they undergo inversion through the N-N bond breaking pathway rather than the general conformational pathway. In these diaza[5]helicenes with this inversion mechanism, the reduction of electronic repulsion in the N-N bond by modification of S to SO2 at the outer position of the helix led to a significantly higher inversion barrier, 35.3 kcal/mol, compared to [5]helicene. 1,1',10,10'-Biphenothiazine S,S,S',S'-tetroxide was highly resistant to acid-mediated N-N bond breaking and racemization under acidic conditions.

7.
Angew Chem Int Ed Engl ; 62(8): e202217704, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36578175

RESUMO

We newly synthesized a series of homo- and hetero-tetracene (Tc) oligomers to propose a molecular design strategy for the efficient exciton transport in linear oligomers by promoting correlated triplet pair (TT) dissociation and controlling sequential exciton trapping process of individual doubled triplet excitons (T+T) by intramolecular singlet fission. First, entropic gain effects on the number of Tc units are examined by comparing Tc-homo-oligomers [(Tc)n : n=2, 4, 6]. Then, a comparison of (Tc)n and Tc-hetero-oligomer [TcF3 -(Tc)4 -TcF3 ] reveals the vibronic coupling effect for entropic gain. Observed entropic effects on the T+T formation indicated that the exciton migration is rationalized by number of possible TT states increased both by increasing the number of Tc units and by the vibronic levels at the terminal TcF3 units. Finally, we successfully observed high-yield exciton trapping process (trapped triplet yield: ΦTrT =176 %).

8.
J Org Chem ; 87(5): 2508-2519, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179377

RESUMO

Bowl-shaped aromatic molecules, buckybowls, are attractive molecules because of the unique properties derived from their curved-π scaffolds. Doping heteroatoms into buckybowl frameworks is a powerful method to change their structural and electronical properties. Herein, we report the synthesis of C70 fragment buckybowl, homosumanene, and heterahomosumanenes having a lactone moiety and a lactam moiety via three ring-expansion reactions using sumanenone as a common intermediate. X-ray diffraction analysis of the single crystals reveals their columnar packing structure with a shallow bowl-depth. The lactam moiety is readily derivatized to give azahomosumanene derivatives, nitrogen-doped analogues of homosumanene possessing a pyridine ring at the peripheral carbon. The synthetic application of the α-phenyl azahomosumanene as a cyclometalating ligand with platinum also revealed its utility for preparing a metal complex bearing a buckybowl ligand.

9.
Angew Chem Int Ed Engl ; 59(37): 16195-16201, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32488985

RESUMO

Elastic organic crystals have attracted considerable attention as next-generation flexible smart materials. However, the detailed information on both molecular packing change and macroscopic mechanical crystal deformations upon applied stress is still insufficient. Herein, we report that fluorescent single crystals of 9,10-dibromoanthracene are elastically bendable and stretchable, which allows a detailed investigation of the deformation behavior. We clearly observed a Poisson effect for the crystal, where the short axes (b and c-axes) of the crystal are contracted upon elongation along the long axis (a-axis). Moreover, we found that the Poisson's ratios along the b-axis and c-axis are largely different. Theoretical molecular simulation suggests that the tilting motion of the anthracene may be responsible for the large deformation along the c-axis. Spatially resolved photoluminescence (PL) measurement of the bent elastic crystals reveals that the PL spectra at the outer (elongated), central (neutral), and inner (contracted) sides are different from each other.

10.
Angew Chem Int Ed Engl ; 59(18): 7063-7068, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32067329

RESUMO

We present spatiotemporal control of aggregation-induced emission enhancement (AIEE) of a protonated tetraphenylethene derivative by optical manipulation. A single submicrometer-sized aggregate is initially confined by laser irradiation when its fluorescence is hardly detectable. The continuous irradiation of the formed aggregate leads to sudden and rapid growth, resulting in bright yellow fluorescence emission. The fluorescence intensity at the peak wavelength of 540 nm is tremendously enhanced with growth, meaning that AIEE is activated by optical manipulation. Amazingly, the switching on/off of the activation of AIEE is arbitrarily controlled by alternating the laser power. This result means that optical manipulation increases the local concentration, which overcomes the electrostatic repulsion between the protonated molecules, namely, optical manipulation changes the aggregate structure. The dynamics and mechanism in AIEE controlled by optical manipulation will be discussed from the viewpoint of molecular conformation and association depending on the laser power.

11.
J Am Chem Soc ; 141(14): 5995-6005, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30869881

RESUMO

When employing self-assembled monolayers (SAMs) for tuning surface and interface properties, organic molecules that enable strong binding to the substrate, large-area structural uniformity, precise alignment of functional groups, and control of their density are highly desirable. To achieve these goals, tripod systems bearing multiple bonding sites have been developed as an alternative to conventional monodentate systems. Bonding of all three sites has, however, hardly been achieved, with the consequence that structural uniformity and orientational order in tripodal SAMs are usually quite poor. To overcome that problem, we designed 1,8,13-trimercaptomethyltriptycene (T1) and 1,8,13-trimercaptotriptycene (T2) as potential tripodal SAM precursors and investigated their adsorption behavior on Au(111) combining several advanced experimental techniques and state-of-the-art theoretical simulations. Both SAMs adopt dense, nested hexagonal structures but differ in their adsorption configurations and structural uniformity. While the T2-based SAM exhibits a low degree of order and noticeable deviation from the desired tripodal anchoring, all three anchoring groups of T1 are equally bonded to the surface as thiolates, resulting in an almost upright orientation of the benzene rings and large-area structural uniformity. These superior properties are attributed to the effect of conformationally flexible methylene linkers at the anchoring groups, absent in the case of T2. Both SAMs display interesting electronic properties, and, bearing in mind that the triptycene framework can be functionalized by tail groups in various positions and with high degree of alignment, especially T1 appears as an ideal docking platform for complex and highly functional molecular films.

12.
J Am Chem Soc ; 140(41): 13497-13502, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30281289

RESUMO

A surprising terminal-group effect on the structural and physical properties of an amorphous polymer is reported. We recently demonstrated that triptycene derivatives with substituents at the 1,8,13-positions show specific self-assembly behavior, enabling the formation of a well-defined "2D + 1D" structure based on nested hexagonal packing of the triptycenes. Upon terminal functionalization with a 1,8-substituted triptycene (1,8-Trip), a liquid polymer, polydimethylsiloxane (PDMS, Mn = 18-24 kDa), turned into a highly viscous solid that exhibits birefringence at 25 °C. Small-angle and wide-angle X-ray scattering measurements revealed that the resulting telechelic PDMS assembles into a 2D + 1D structure, where layers of PDMS domains, formed between 2D assemblies of the triptycene termini, stack into a 1D multilayer structure with a layer spacing of 18-20 nm. Because of this structuring, the complex viscosity of the telechelic PDMS was dramatically enhanced, providing a value 4 orders of magnitude greater than that of the original PDMS. Remarkably, the structural and physical properties of PDMS were hardly changed upon terminal functionalization with another regioisomer of triptycene (1,4-Trip), which differs only in the substitution pattern.

13.
Angew Chem Int Ed Engl ; 56(47): 14858-14862, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-28973787

RESUMO

Effective induction of preferred-handed helicity of polyacetylenes by pendant mechanically chiral rotaxanes is discussed. Polyacetylenes possessing optically active mechanically chiral rotaxanes in the side chains were synthesized by the polymerization of the corresponding enantiopure [2]rotaxane-type ethynyl monomers prepared by the chiral-phase HPLC separations. The CD Cotton effects revealed that the polyacetylenes took preferred-handed helical conformations depending on the rotaxane chirality. The preferred-handed helix was not disturbed by an additional chiral substituent on the rotaxane side chain. These results demonstrate the significance and utility of mechanically chiral rotaxanes for the effective construction of asymmetric fields.

14.
J Am Chem Soc ; 138(36): 11727-33, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27549349

RESUMO

Tailoring structurally anisotropic molecular assemblies while controlling their orientation on solid substrates is an important subject for advanced technologies that use organic thin films. Here we report a supramolecular scaffold based on tripodal triptycene assemblies, which enables functional molecular units to assemble into a highly oriented, multilayered two-dimensional (2D) structure on solid substrates. The triptycene building block carries an ethynyl group and three flexible side chains at the 10- and 1,8,13-positions, respectively. These bridgehead-substituted tripodal triptycenes self-assembled on solid substrates to form a well-defined "2D hexagonal + 1D lamellar" structure, which developed parallel to the surface of the substrates. Remarkably, the assembling properties of the triptycene building blocks, particularly for a derivative with tri(oxyethylene)-containing side chains, were not impaired when the alkyne terminal was functionalized with a large molecular unit such as C60, which is comparable in diameter to the triptycene framework. Consequently, thin films with a multilayered 2D assembly of the C60 unit were obtained. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements revealed that the C60 film exhibits highly anisotropic charge-transport properties. Bridgehead-substituted tripodal triptycenes may provide a versatile supramolecular scaffold for tailoring the 2D assembly of molecular units into a highly oriented thin film, and in turn for exploiting the full potential of anisotropic molecular functions.

15.
Chem Sci ; 15(28): 11021-11028, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39027311

RESUMO

Controlling the rotation of carbon-carbon bonds, which is ubiquitous in organic molecules, to create functionality has been a subject of interest for a long time. In this context, it would be interesting to explore whether cooperative and collective rotation could occur if dipolar molecular rotors were aligned close together while leaving adequate space for rotation. However, it is difficult to realize such structures as bulk molecular assemblies, since molecules generally tend to assemble into the closest packing structure to maximize intermolecular forces. To tackle this question, we examined an approach using a supramolecular scaffold composed of a tripodal triptycene, which has been demonstrated to strongly promote the assembly of various molecular and polymer units into regular "2D hexagonal packing + 1D layer" structures. We found that a molecule (1) consisting of a dipolar 1,2-difluorobenzene rotor sandwiched by two 10-ethynyl-1,8,13-tridodecyloxy triptycenes, successfully self-assembles into the desired structure, where the dipolar rotor units align two-dimensionally at a close interval of approximately 0.8 nm while having a degree of freedom for rotational motion. Here we describe the self-assembly behavior of 1 in comparison with the general trend in molecular self-assembly, as well as the motility of the two-dimensionally aligned molecular rotors investigated using solid-state 19F-MAS NMR spectroscopy.

16.
Chem Commun (Camb) ; 60(7): 889-892, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38165640

RESUMO

Development of two-dimensional materials and exploration of their functionalities are significant challenges due to their potential. In this study, we successfully fabricated a supramolecular nanosheet composed of amphiphilic Rose Bengal dyes in an aqueous medium. Furthermore, we elucidated a distinct change in the photosensitisation mechanism induced by nanosheet formation.

17.
ChemSusChem ; 17(12): e202400408, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38622065

RESUMO

The development of a highly active photocatalyst for visible-light water splitting requires a high-quality semiconductor material and a cocatalyst, which promote both the migration of photogenerated charge carriers and surface redox reactions. In this work, a cocatalyst was loaded onto an oxyfluoride photocatalyst, Pb2Ti2O5.4F1.2, to improve the water oxidation activity. Among the metal oxides examined as cocatalysts, RuO2 was found to be the most suitable, and the O2 evolution activity depended on the preparation conditions for Ru/Pb2Ti2O5.4F1.2. The highest activity was obtained with RuCl3-impregnated Pb2Ti2O5.4F1.2 heated under a flow of H2 at 523 K. The H2-treated Ru/Pb2Ti2O5.4F1.2 showed an O2 evolution rate an order of magnitude higher than those for the analogues without the H2 treatment (e. g., RuO2/Pb2Ti2O5.4F1.2). Physicochemical analyses by X-ray absorption fine-structure spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and time-resolved microwave conductivity measurements indicated that the optimized photocatalyst contained partially reduced RuO2 species with a particle size of ~5 nm. These partially reduced species effectively trapped the photogenerated charge carriers and promoted the oxidation of water into O2. The optimized Ru/Pb2Ti2O5.4F1.2 could function as an O2-evolving photocatalyst in Z-scheme overall water splitting, in combination with an Ru-loaded, Rh-doped SrTiO3 photocatalyst.

18.
Chem Commun (Camb) ; 60(28): 3862, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526752

RESUMO

Correction for 'Water-dispersible donor-acceptor-donor π-conjugated bolaamphiphiles enabling a humidity-responsive luminescence color change' by Tomoya Enjou et al., Chem. Commun., 2024, https://doi.org/10.1039/d3cc05749f.

19.
Chem Commun (Camb) ; 60(27): 3653-3656, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38488046

RESUMO

Novel water-dispersible donor-acceptor-donor π-conjugated bolaamphiphiles, having dibenzophenazine as the acceptor and heteroatom-bridged amphiphilic diarylamines as the donors, have been developed. The materials displayed a distinct photoluminescence color change in response to humidity in a poly(vinylalcohol) matrix.

20.
JACS Au ; 3(11): 3194-3203, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38034953

RESUMO

Solution-processed inorganic solar cells with less toxic and earth-abundant elements are emerging as viable alternatives to high-performance lead-halide perovskite solar cells. However, the wide range of elements and process parameters impede the rapid exploration of vast chemical spaces. Here, we developed an automated robot-embedded measurement system that performs photoabsorption spectroscopy, optical microscopy, and white-light flash time-resolved microwave conductivity (TRMC). We tested 576 films of quaternary element-blended wide-bandgap Cs-Bi-Sb-I semiconductors with various compositions, organic salt additives (MACl, FACl, MAI, and FAI, where MA and FA represent methylammonium and formamidinium, respectively), and thermal annealing temperatures. Among them, we found that the maximum power conversion efficiency (PCE) was 2.36%, which is significantly higher than the PCE of 0.68% for a reference film without an additive. Machine learning (ML) and statistical analyses revealed significant features and their relationships with TRMC transients, thereby demonstrating the advantages of combining ML and automated experiments for the high-throughput exploration of photovoltaic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA