Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(3): e17220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433333

RESUMO

Zooplankton community composition of northern lakes is changing due to the interactive effects of climate change and recovery from acidification, yet limited data are available to assess these changes combined. Here, we built a database using archives of temperature, water chemistry and zooplankton data from 60 Scandinavian lakes that represent broad spatial and temporal gradients in key parameters: temperature, calcium (Ca), total phosphorus (TP), total organic carbon (TOC), and pH. Using machine learning techniques, we found that Ca was the most important determinant of the relative abundance of all zooplankton groups studied, while pH was second, and TOC third in importance. Further, we found that Ca is declining in almost all lakes, and we detected a critical Ca threshold in lake water of 1.3 mg L-1 , below which the relative abundance of zooplankton shifts toward dominance of Holopedium gibberum and small cladocerans at the expense of Daphnia and copepods. Our findings suggest that low Ca concentrations may shape zooplankton communities, and that current trajectories of Ca decline could promote widespread changes in pelagic food webs as zooplankton are important trophic links from phytoplankton to fish and different zooplankton species play different roles in this context.


Assuntos
Cálcio , Cladocera , Animais , Lagos , Zooplâncton , Água
2.
Glob Chang Biol ; 27(23): 6294-6306, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34520606

RESUMO

Global environmental changes are causing widespread nutrient depletion, declines in the ratio of dissolved inorganic nitrogen (N) to total phosphorus (DIN:TP), and increases in both water temperature and terrestrial colored dissolved organic carbon (DOC) concentration (browning) in high-latitude northern lakes. Declining lake DIN:TP, warming, and browning alter the nutrient limitation regime and biomass of phytoplankton, but how these stressors together affect the nutritional quality in terms of polyunsaturated fatty acid (PUFA) contents of the pelagic food web components remains unknown. We assessed the fatty acid compositions of seston and zooplankton in 33 lakes across south-to-north and boreal-to-subarctic gradients in Sweden. Data showed higher lake DIN:TP in the south than in the north, and that boreal lakes were warmer and browner than subarctic lakes. Lake DIN:TP strongly affected the PUFA contents-especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)-in seston, calanoids, and copepods (as a group), but not in cladocerans. The EPA+DHA contents increased by 123% in seston, 197% in calanoids, and 230% in copepods across a lake molar DIN:TP gradient from 0.17 to 14.53, indicating lower seston and copepod nutritional quality in the more N-limited lakes (those with lower DIN:TP). Water temperature affected EPA+DHA contents of zooplankton, especially cladocerans, but not seston. Cladoceran EPA+DHA contents were reduced by ca. 6% for every 1°C increase in surface water. Also, the EPA, DHA, or EPA+DHA contents of Bosmina, cyclopoids, and copepods increased in lakes with higher DOC concentrations or aromaticity. Our findings indicate that zooplankton food quality for higher consumers will decrease with warming alone (for cladocerans) or in combination with declining lake DIN:TP (for copepods), but impacts of these stressors are moderated by lake browning. Global environmental changes that drive northern lakes toward more N-limited, warmer, and browner conditions will reduce PUFA availability and nutritional quality of the pelagic food web components.


Assuntos
Plâncton , Zooplâncton , Animais , Lagos , Valor Nutritivo , Fitoplâncton
3.
Glob Chang Biol ; 27(19): 4615-4629, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34241940

RESUMO

Winter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed-a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs-is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass. To test this hypothesis, we developed an index of runoff timing based on the date when 50% of cumulative runoff between January 1 and May 31 had occurred. The runoff index was computed using stream discharge for inflows, outflows, or for flows from nearby streams for 41 lakes in Europe and North America. The runoff index was then compared with summer chlorophyll-a (Chl-a) concentration (a proxy for phytoplankton biomass) across 5-53 years for each lake. Earlier runoff generally corresponded to lower summer Chl-a. Furthermore, years with earlier runoff also had lower winter/spring runoff magnitude, more protracted runoff, and earlier ice-out. We examined several lake characteristics that may regulate the strength of the relationship between runoff timing and summer Chl-a concentrations; however, our tested covariates had little effect on the relationship. Date of ice-out was not clearly related to summer Chl-a concentrations. Our results indicate that ongoing changes in winter conditions may have important consequences for summer phytoplankton biomass and production.


Assuntos
Lagos , Fitoplâncton , Clorofila , Clorofila A , Estações do Ano
4.
Environ Sci Technol ; 49(16): 9758-67, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26206098

RESUMO

Decreasing duration and occurrence of northern hemisphere ice cover due to recent climate warming is well-documented; however, biogeochemical dynamics underneath the ice are poorly understood. We couple time-series analyses of water column and sediment water interface (SWI) geochemistry with hydrodynamic data to develop a holistic model of iron (Fe), manganese (Mn), and phosphorus (P) behavior underneath the ice of a shallow eutrophic freshwater bay. During periods of persistent subfreezing temperatures, a highly reactive pool of dissolved and colloidal Fe, Mn, and P develops over time in surface sediments and bottom waters due to reductive dissolution of Fe/Mn(oxy)hydroxides below the SWI. Redox dynamics are driven by benthic O2 consumption, limited air-water exchange of oxygen due to ice cover, and minimal circulation. During thaw events, the concentration, distribution and size partitioning of all species changes, with the highest concentrations of P and "truly dissolved" Fe near the water column surface, and a relatively well-mixed "truly dissolved" Mn and "colloidal" Fe profile due to the influx of geochemically distinct river water and increased circulation. The partitioning and flux of trace metals and phosphorus beneath the ice is dynamic, and heavily influenced by climate-dependent physical processes that vary in both time and space.


Assuntos
Eutrofização , Sedimentos Geológicos/química , Camada de Gelo , Ferro/análise , Lagos/química , Manganês/análise , Fósforo/análise , Água/química , Clima , Geografia , Hidrodinâmica , Oxigênio/análise , Temperatura , Oligoelementos/análise , Poluentes Químicos da Água/análise
5.
J Environ Qual ; 44(3): 882-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26024268

RESUMO

Lake sediments are known to be a significant source of phosphorus (P) to plankton populations under certain biogeochemical conditions; however, the contribution of sediment organic P (P) to internal P loads remains poorly understood. We investigated P speciation and bioavailability in sediments collected over multiple months from a shallow, eutrophic bay in Lake Champlain (Missisquoi Bay, VT) using solution P nuclear magnetic resonance (NMR) spectroscopy and enzymatic hydrolysis (EH) analysis of sediments collected during years with (2008) and without (2007) algal blooms. Sediments collected during bloom onset (July) and peak bloom (August) months contained the largest proportion of enzyme-labile P, whereas pre- and postbloom sediments were primarily composed of nonlabile P. Monoester P to diester P ratios changed with respect to depth, particularly during bloom periods. Monoester P and DNA accumulation, likely from settling particulate matter, began at the onset of the bloom and continued into October 2008 during the postbloom period. The disappearance of inositol hexakisphosphate stereoisomers and the generation of orthophosphate at lower sediment depths was also evident in August 2008. Principal components analysis of EH and NMR species proportions confirmed differences between sediment cores collected during bloom onset and peak bloom, compared with pre- and postbloom sediments. Large enzyme-labile and P species proportions corresponded to increased sediment P flux and reduced manganese and iron species in porewater. These findings suggest that interseasonal changes in P speciation may influence P mobility in sediments and contribute to important feedback dynamics between biological productivity and sediment water interface geochemistry.

6.
Sci Total Environ ; 940: 173570, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38825201

RESUMO

Global change may introduce fundamental alterations in phytoplankton biomass and community structure that can alter the productivity of northern lakes. In this study, we utilized Swedish and Finnish monitoring data from lakes that are spatially (135 lakes) and temporally (1995-2019, 110 lakes) extensive to assess how phytoplankton biomass (PB) of dominant phytoplankton groups related to changes in water temperature, pH and key nutrients [total phosphorus (TP), total nitrogen (TN), total organic carbon (TOC), iron (Fe)] along spatial (Fennoscandia) and temporal (25 years) gradients. Using a machine learning approach, we found that TP was the most important determinant of total PB and biomass of a specific species of Raphidophyceae - Gonyostomum semen - and Cyanobacteria (both typically with adverse impacts on food-webs and water quality) in spatial analyses, while Fe and pH were second in importance for G. semen and TN and pH were second and third in importance for Cyanobacteria. However, in temporal analyses, decreasing Fe and increasing pH and TOC were associated with a decrease in G. semen and an increase in Cyanobacteria. In addition, in many lakes increasing TOC seemed to have generated browning to an extent that significantly reduced PB. The identified discrepancy between the spatial and temporal results suggests that substitutions of data for space-for-time may not be adequate to characterize long-term effects of global change on phytoplankton. Further, we found that total PB exhibited contrasting temporal trends (increasing in northern- and decreasing in southern Fennoscandia), with the decline in total PB being more pronounced than the increase. Among phytoplankton, G. semen biomass showed the strongest decline, while cyanobacterial biomass showed the strongest increase over 25 years. Our findings suggest that progressing browning and changes in Fe and pH promote significant temporal changes in PB and shifts in phytoplankton community structures in northern lakes.


Assuntos
Biomassa , Monitoramento Ambiental , Lagos , Fitoplâncton , Lagos/química , Suécia , Finlândia , Mudança Climática , Fósforo/análise , Nitrogênio/análise , Cianobactérias/crescimento & desenvolvimento
7.
Nat Clim Chang ; 13(4): 389-396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038592

RESUMO

Climate change interacts with local processes to threaten biodiversity by disrupting the complex network of ecological interactions. While changes in network interactions drastically affect ecosystems, how ecological networks respond to climate change, in particular warming and nutrient supply fluctuations, is largely unknown. Here, using an equation-free modelling approach on monthly plankton community data in ten Swiss lakes, we show that the number and strength of plankton community interactions fluctuate and respond nonlinearly to water temperature and phosphorus. While lakes show system-specific responses, warming generally reduces network interactions, particularly under high phosphate levels. This network reorganization shifts trophic control of food webs, leading to consumers being controlled by resources. Small grazers and cyanobacteria emerge as sensitive indicators of changes in plankton networks. By exposing the outcomes of a complex interplay between environmental drivers, our results provide tools for studying and advancing our understanding of how climate change impacts entire ecological communities.

8.
Sci Data ; 8(1): 200, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349102

RESUMO

Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.

9.
Ecology ; 101(11): e03153, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32731303

RESUMO

Ecological stoichiometry is concerned with the ratios of different elements, particularly carbon, nitrogen, and phosphorus. Ratios by their nature do not respond symmetrically to changes in the numerator and denominator and do not follow normal distributions; however, researchers frequently fail to consider these properties in their analyses, which has biased reported results. Calculating means, variance, or linear slopes based on untransformed ratios results in biased results. I demonstrate the consequences of these errors for inferences from stoichiometric analyses using simple examples and several large monitoring data sets. I then review 100 studies in ecological stoichiometry and find that misuse of ratio data is common, with 93% of studies containing at least one error. These errors may be problematic, particularly in large-scale meta-analyses summarizing data over large ranges. Fortunately, most of these mistakes can be easily avoided by first log transforming elemental ratios. I therefore recommend that, to ensure robust and reproducible results, researchers in ecological stoichiometry should adopt a convention of presenting stoichiometric ratio data as the logarithm of molar ratios in the future. The widespread use of untransformed nitrogen to phosphorus ratio as an indicator of nutrient limitation has likely exaggerated the importance of phosphorus limitation, particularly in freshwater systems.


Assuntos
Nitrogênio , Fósforo , Carbono , Ecossistema
10.
Sci Rep ; 10(1): 20514, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239702

RESUMO

Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970-2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade-1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m-3 decade-1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade-1), but had high variability across lakes, with trends in individual lakes ranging from - 0.68 °C decade-1 to + 0.65 °C decade-1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA