Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 16(5): 11629-47, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26006238

RESUMO

This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced.


Assuntos
Polímeros/química , Silicatos/química , Hidróxido de Sódio/química , Cristalização , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Difração de Raios X
2.
Int J Mol Sci ; 13(6): 7186-7198, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22837687

RESUMO

In this paper, we report the results of our investigation on the possibility of producing foam concrete by using a geopolymer system. Class C fly ash was mixed with an alkaline activator solution (a mixture of sodium silicate and NaOH), and foam was added to the geopolymeric mixture to produce lightweight concrete. The NaOH solution was prepared by dilute NaOH pellets with distilled water. The reactives were mixed to produce a homogeneous mixture, which was placed into a 50 mm mold and cured at two different curing temperatures (60 °C and room temperature), for 24 hours. After the curing process, the strengths of the samples were tested on days 1, 7, and 28. The water absorption, porosity, chemical composition, microstructure, XRD and FTIR analyses were studied. The results showed that the sample which was cured at 60 °C (LW2) produced the maximum compressive strength for all tests, (11.03 MPa, 17.59 MPa, and 18.19 MPa) for days 1, 7, and 28, respectively. Also, the water absorption and porosity of LW2 were reduced by 6.78% and 1.22% after 28 days, respectively. The SEM showed that the LW2 sample had a denser matrix than LW1. This was because LW2 was heat cured, which caused the geopolymerization rate to increase, producing a denser matrix. However for LW1, microcracks were present on the surface, which reduced the compressive strength and increased water absorption and porosity.


Assuntos
Materiais de Construção , Silicatos/química , Hidróxido de Sódio/química
3.
Materials (Basel) ; 6(10): 4450-4461, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28788339

RESUMO

This paper presents the mechanical and microstructural characteristics of a lightweight aggregate geopolymer concrete (LWAGC) synthesized by the alkali-activation of a fly ash source (FA) before and after being exposed to elevated temperatures, ranging from 100 to 800 °C. The results show that the LWAGC unexposed to the elevated temperatures possesses a good strength-to-weight ratio compared with other LWAGCs available in the published literature. The unexposed LWAGC also shows an excellent strength development versus aging times, up to 365 days. For the exposed LWAGC to the elevated temperatures of 100 to 800 °C, the results illustrate that the concretes gain compressive strength after being exposed to elevated temperatures of 100, 200 and 300 °C. Afterward, the strength of the LWAGC started to deteriorate and decrease after being exposed to elevated temperatures of 400 °C, and up to 800 °C. Based on the mechanical strength results of the exposed LWAGCs to elevated temperatures of 100 °C to 800 °C, the relationship between the exposure temperature and the obtained residual compressive strength is statistically analyzed and achieved. In addition, the microstructure investigation of the unexposed LWAGC shows a good bonding between aggregate and mortar at the interface transition zone (ITZ). However, this bonding is subjected to deterioration as the LWAGC is exposed to elevated temperatures of 400, 600 and 800 °C by increasing the microcrack content and swelling of the unreacted silicates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA