Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 144: 109287, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092091

RESUMO

Bacterial infection is considered one of the major issues in fish culturing that results in economic losses. Metal nanoparticles are a cutting-edge and effective disease management and preventive strategy because of their antibacterial ability. In this investigation, the selenium nanoparticles were prepared by a biological method using Nelumbo nucifera leaves extract. The in-vitro antibacterial activity of N. nucifera synthesized selenium nanoparticles (NN-SeNPs) was tested against Aeromonas veronii. A treatment assay was conducted on 210 Oreochromis niloticus (average body weight: 27 ± 2.00 g). A preliminary approach was conducted on 90 fish for determination of the therapeutic concentration of NN-SeNPs which was found to be 4 mg/L. Fish (n = 120) were categorized into four groups for 10 days; G1 (control) and G2 (NN-SeNPs) were non-challenged and treated with 0 and 4 mg/L NN-SeNPs, respectively. While, G3 and G4 were infected with 2 × 106 CFU/mL of A. veronii and treated with 0 and 4 mg/L NN-SeNPs, respectively. NN-SeNPs exhibited an inhibition zone against A. veronii with a diameter of 16 ± 1.25 mm. The A. veronii infection increased the hepato-renal biomarkers (alanine and aspartate aminotransferases and creatinine) than the control group. An oxidative stress was the consequence of A. veronii infection (higher malondialdehyde and hydrogen peroxide levels with lower glutathione peroxidase superoxide, dismutase, and catalase activity). A. veronii infection resulted in lower immunological biomarker values (immunoglobulin M, lysozyme, and complement 3) with higher expression of the inflammatory cytokines (interleukin-1ß and tumor necrosis factor-ɑ) as well as lower expression of the anti-inflammatory cytokines (interleukin-10 and transforming growth factor-ß). Therapeutic application with 4 mg/L NN-SeNPs prevented the disease progression; and modulated the hepato-renal function disruptions, oxidant-immune dysfunction, as well as the pro/anti-inflammatory cytokines pathway in the A. veronii-infected fish. These findings suggest that NN-SeNPs, employed as a water therapy, can safeguard fish from the harmful effects of A. veronii and serve as a promising antibacterial agent for sustainable aquaculture.


Assuntos
Ciclídeos , Doenças dos Peixes , Nanopartículas Metálicas , Nanopartículas , Nelumbo , Selênio , Animais , Antioxidantes/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Aeromonas veronii , Citocinas/metabolismo , Dieta , Anti-Inflamatórios/metabolismo , Antibacterianos/metabolismo , Ração Animal/análise
2.
BMC Vet Res ; 20(1): 127, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561720

RESUMO

BACKGROUND: Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia (Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success as it endows promising results in therapies compared to traditional protocols. OBJECTIVE: Therefore, the current perspective is considered the first report to assess the anti-bacterial efficacy of titanium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia. METHODS: The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days. RESULTS: Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, and aggression) and depression of immune-antioxidant variables (complement 3, lysozyme activity, total antioxidant capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepatorenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes and immuno-histochemical alterations (very weak BCL-2 and potent caspase-3 immuno-expressions) were seen. Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue architectures. CONCLUSION: Overall, this report encompasses the key role of TDNG as an anti-bacterial agent for controlling P. putida infection and improving the health status of Nile tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Polietilenoglicóis , Polietilenoimina , Pseudomonas putida , Titânio , Animais , Antioxidantes , Nanogéis , Dieta , Suplementos Nutricionais , Ração Animal/análise , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia
3.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 839-853, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323934

RESUMO

This experiment was designed to investigate the impact of curcumin-olive oil nanocomposite (CONC) supplementation on uteroplacental hemodynamics and ultrasonographic measurements as well as maternal oxidative status in midgestating goats. Twelve synchronized pregnant goats (85.58 ± 1.08 days of gestation; mean ± SD) were uniformly assigned to two groups (n = 6/group); the first group received daily oral supplementation of CONC (3 mg/kg body weight; nanocurcumin [NC] group) for 32 days, and the second group was offered physiological saline (control) following the NC group timeline. The goats of both groups were examined at 3-day intervals for middle uterine (MUA) and umbilical (UMA) arteries hemodynamics (pulsatility index [PI], resistive index [RI], systole/diastole [S/D] and blood flow rate [BFR]) and diameters, uteroplacental thickness (UPT), placentomes' diameter (PD) and echogenicity, steroid hormones (progesterone and estradiol 17ß), oxidative biomarkers (total antioxidant capacity [TAC], catalase [CAT], malondialdehyde [MDA]), nitric oxide (NO) and blood cells DNA integrity. The UPT (p = 0.012) and PD (p = 0.021) values were higher in the NC group than in their counterparts' control group (D11-32). There were increases in diameter (p = 0.021 and p = 0.012) and decreases (p = 0.021, p = 0.016 and p = 0.041 [MUA]; p = 0.015, p = 0.023 and p = 0.011 [UMA] respectively) in Doppler indices (PI, RI and S/D) of the MUA and UMA in the NC group compared to the control group (D14-32). On D20-32 (MUA) and D14-32 (UMA), the NC goats had higher BFR than the control group (p = 0.021, 0.018 respectively). The means of blood cells with fragmented DNA were lower (p = 0.022) in the NC group than in the control group on Days 8 and 21 postsupplementation. There were increases in CAT and NO (D20-32; p = 0.022 and p = 0.004 respectively), and TAC (D17-32; p = 0.007) levels in the NC goats compared to the control ones. The NC group had lower (p = 0.029) concentrations of MDA than the control group on Day 20 postsupplementation onward. In conclusion, oral supplementation of CONC improved uteroplacental blood flow and the antioxidant capacity of midgestating goats.


Assuntos
Antioxidantes , Curcumina , Suplementos Nutricionais , Cabras , Placenta , Útero , Animais , Feminino , Gravidez , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Curcumina/farmacologia , Curcumina/administração & dosagem , Dieta/veterinária , Cabras/fisiologia , Nanocompostos/química , Placenta/efeitos dos fármacos , Circulação Placentária/efeitos dos fármacos , Útero/efeitos dos fármacos , Útero/irrigação sanguínea
4.
Fish Physiol Biochem ; 50(2): 767-783, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38060081

RESUMO

In the aquaculture industry, silica nanoparticles (SiNPs) have great significance, mainly for confronting diseases. Therefore, the present study aims to assess the antibacterial efficiency of SiNPs as a versatile trial against Aeromonas veronii infection in African catfish (Clarias gariepinus). Further, we investigated the influence of SiNPs in palliating the immune-antioxidant stress biochemical, ethological, and histopathological alterations induced by A. veronii. The experiment was conducted for 10 days, and about 120 fish were distributed into four groups at random, with 30 fish each. The first group is a control that was neither exposed to infection nor SiNPs. The second group (SiNPs) was vulnerable to SiNPs at a concentration of 20 mg/L in water. The third group was experimentally infected with A. veronii at a concentration of 1.5 × 107 CFU/mL. The fourth group (A. veronii + SiNPs) was exposed to SiNPs and infected with A. veronii. Results outlined that A. veronii infection induced behavioral alterations and suppression of immune-antioxidant responses that appeared as a clear decline in protein profile indices, complement 3, lysozyme activity, glutathione peroxidase, and total antioxidant capacity. The kidney and liver function biomarkers (creatinine, urea, alkaline phosphatase, and alanine aminotransferase) and lipid peroxide (malondialdehyde) were substantially increased in the A. veronii group, with marked histopathological changes and immunohistochemical alterations in these tissues. Interestingly, the exposure to SiNPs resulted in a clear improvement in all measured biomarkers and a noticeable regeneration of the histopathological changes. Overall, it will establish that SiNPs are a new, successful tool for opposing immunological, antioxidant, physiological, and histopathological alterations induced by A. veronii infection.


Assuntos
Antioxidantes , Peixes-Gato , Animais , Antioxidantes/metabolismo , Aeromonas veronii/metabolismo , Peixes-Gato/metabolismo , Estresse Oxidativo , Terapia de Imunossupressão , Biomarcadores/metabolismo
5.
Fish Shellfish Immunol ; 138: 108842, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209754

RESUMO

Aeromonas veronii is a pathogenic bacterium associated with various diseases in aquaculture. However, few studies address the antibacterial activity using nanoparticles (NPs). Hence, the current study is innovative to evaluate the antibacterial efficacy of silica nanoparticles (SiNPs) against A. veronii infection in-vitro with a trial for treatment in-vivo. Primarily, we assessed the in-vitro antibacterial activity against A. veronii. Further, we investigated the hematological profile, immune-antioxidant response, and gene expression of African catfish (Clarias gariepinus) in response to SiNPs exposure and the A. veronii challenge. Fish (N = 120; weight: 90 ± 6.19 g) were distributed into four groups (30 fish/group) for a ten-days-treatment trial. The first (control) and second (SiNPs) groups were treated with 0 mg/L and 20 mg/L SiNPs in water, respectively. The third (A. veronii) and fourth (SiNPs + A. veronii) groups were treated with 0 mg/L and 20 mg/L SiNPs in water, respectively, and infected with A. veronii (1.5 × 107 CFU/mL). Results demonstrated that SiNPs displayed an in-vitro antibacterial activity against A. veronii with a 21 mm inhibitory zone. A. veronii infection caused a high mortality rate (56.67%) and substantial reductions in hematological indices and immune indicators [nitric oxide (NO) and immunoglobulin M (IgM)]. Additionally, marked decline in the level of antioxidants [superoxide dismutase (SOD), catalase (CAT), and reduced glutathione content (GSH)] as well as down-regulation in the immune-related genes [interleukins (IL-1ß and IL-8) and tumor necrosis factor-alpha (TNF-α)] and antioxidant-related genes [SOD1, glutathione peroxidase (GPx), and glutathione-S-transferase (GST)] were the consequences of A. veronii infection. Surprisingly, treatment of A. veronii-infected fish with SiNPs lessened the mortality rate, enhanced the blood picture, modulated the immune-antioxidant parameters, and resulted in gene up-regulation. Overall, this study encompasses the significant role of SiNPs, a new versatile tool for combating hematological, immuno-antioxidant alterations, and gene down-regulation induced by A. veronii infection and sustainable aquaculture production.


Assuntos
Peixes-Gato , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Nanopartículas , Animais , Antioxidantes/metabolismo , Aeromonas veronii/fisiologia , Regulação para Baixo , Expressão Gênica , Peixes-Gato/genética , Peixes-Gato/metabolismo
6.
Curr Issues Mol Biol ; 44(7): 2923-2938, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35877426

RESUMO

Silver nanoparticles have been used for numerous therapeutic purposes because of their increased biodegradability and bioavailability, yet their toxicity remains questionable as they are known to interact easily with biological systems because of their small size. This study aimed to investigate and compare the effect of silver nanoparticles' particle size in terms of their potential hazard, as well as their potential protective effect in an LPS-induced hepatotoxicity model. Liver slices were obtained from Sprague Dawley adult male rats, and the thickness of the slices was optimized to 150 µm. Under regulated physiological circumstances, freshly cut liver slices were divided into six different groups; GP1: normal, GP2: LPS (control), GP3: LPS + AgNpL (positive control), GP4: LPS + silymarin (standard treatment), GP5: LPS + AgNpS + silymarin (treatment I), GP6: LPS + AgNpL + silymarin (treatment II). After 24 h of incubation, the plates were gently removed, and the supernatant and tissue homogenate were all collected and then subjected to the following biochemical parameters: Cox2, NO, IL-6, and TNF-α. The LPS elicited marked hepatic tissue injury manifested by elevated cytokines and proinflammatory markers. Both small silver nanoparticles and large silver nanoparticles efficiently attenuated LPS hepatotoxicity, mainly via preserving the cytokines' level and diminishing the inflammatory pathways. In conclusion, large silver nanoparticles exhibited effective hepatoprotective capabilities over small silver nanoparticles.

7.
J Biochem Mol Toxicol ; 36(3): e22972, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34964201

RESUMO

Nanoparticles are recently playing a potential role in improving drug uptake and the treatment of diseases. A variety of nanoparticles, such as selenium nanoparticles (SeNPs) and silver nanoparticles (AgNPs) have been used as drug carriers in various ways for treatment of cancers and liver diseases. Our aim in this study is to investigate the ability of AgNPs and SeNPs to target and treat the viral and bacterial infection of the liver in rats and cell lines. For assessment of antioxidant activity of AgNPs in rats with induced liver bacterial infection, six adult male albino rats were included in this study, liver slices were taken and assigned to 6 groups. Markers of hepatic functions, oxidative stress, and inflammation in liver slices are carried out. Although for assessment of antiviral activity of SeNPs, hepatitis B virus transfected (HBV)-replicating human cell line HepG2 and normal hepatocyte cells were used, hepatic and inflammatory alterations are determined through quantitative polymerase chain reaction and comet assay techniques. The effect of AgNPs on interleukin-6 and tumor necrosis factor levels were reduced in different treated groups with AgNPs compared with the control and diseased groups. On the other hand, SeNPs revealed significant alterations in the inflammatory markers as well as DNA damage in the treated HBV-human cell line HepG2 compared to the diseased ones. AgNPs have the ability for producing various hepatic alterations and can inhibit the proliferation of hepatic stellate cells (HSCs) in a dose and size-dependent manner. On the other hand, SeNPs showed excellent selectivity towards viral cells in the HepG2 cell lines. Both AgNPs and SeNPs might be promising drug designs for treating viral and bacterial liver diseases.


Assuntos
Infecções Bacterianas , Fragmentação do DNA/efeitos dos fármacos , Vírus da Hepatite B/metabolismo , Hepatite B , Nanopartículas Metálicas , Estresse Oxidativo/efeitos dos fármacos , Selênio , Prata , Animais , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/metabolismo , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/metabolismo , Humanos , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Ratos , Selênio/química , Selênio/farmacologia , Prata/química , Prata/farmacologia
8.
Bioorg Chem ; 127: 105927, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35868104

RESUMO

BACKGROUND: Nanoparticles are recently playing a potential role in improving drug uptake and the treatment of diseases. A variety of nanoparticles, such as selenium nanoparticles (SeNPs) and Silver nanoparticles (AgNPs) have been used as drug carriers in various ways for treatment of cancers and liver diseases. Our aim in this study is to investigate the ability of AgNPs and SeNPs to target and treat the viral and bacterial infection of liver in rats and cell lines. METHODS: For assessment of antioxidant activity of silver nanoparticles, six adult male albino rats were included in this study, liver slices were taken and assigned to 6 groups. Markers of hepatic functions, oxidative stress and inflammation in liver slices are carried out. While for assessment of antiviral activity of SeNPs, HBV-replicating human cell line HepG2 and normal human cell lines were used, hepatic and inflammatory alterations are determined through quantitative polymerase chain reaction (PCR) and comet assay techniques. RESULTS: The effect of Ag-NPs on interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) levels were reduced in different treated groups with Ag-NPs compared with the control and diseased groups. On the other hand, SeNPs revealed significant alterations in the inflammatory markers as well as DNA damage in the treated HBV- human cell line HepG2 compared to the diseased ones. CONCLUSION: Silver nanoparticles have the ability for producing various hepatic alterations and can inhibit the proliferation of hepatic stellate cells (HSCs) in a dose and size dependent manner. On the other hand, SeNPs showed excellent selectivity towards viral cells in the HepG2 cell lines. Both Ag-NPs and SeNPs might be a promising drug design for treating viral and bacterial liver diseases.


Assuntos
Hepatopatias , Nanopartículas Metálicas , Nanopartículas , Selênio , Humanos , Masculino , Ratos , Antioxidantes/farmacologia , DNA , Hepatopatias/tratamento farmacológico , Nanotecnologia , Estresse Oxidativo , Selênio/farmacologia , Prata/farmacologia , Animais
9.
Heliyon ; 10(1): e24049, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38268588

RESUMO

Background and objectives: Little is known about the implications of titanium dioxide nanoparticles (TiO2NPs) and cadmium chloride (Cd) co-exposure on the male reproductive system in mammals. As a result, this study researched the effects of oral TiO2NPs and/or Cd exposure on male reproduction and testicular functions. Additionally, a mitigation trial with co-enzyme Q10 (CoQ10) has also been conducted. Methods: In a 60-day experiment, seven experimental groups, each containing 10 male Sprague Dawley rats, were orally given distilled water (control), corn oil (vehicle control), CoQ10 (10 mg/kg b.wt), TiO2NPs (50 mg/kg b.wt), Cd (5 mg/kg b.wt), TiO2NPs + Cd, and TiO2NPs + Cd + CoQ10. Then, sperm quality, male sex hormones, oxidative stress indications, Ti and Cd testicular residues, testes and accessory gland architecture, and apoptotic and inflammatory markers in rat testes were assessed. Results: TiO2NPs and/or Cd exposure negatively impacted body weight, weight gain, testicular weights, semen quality, serum reproductive hormones, oxidative stress parameters, and Caspase-3 and tumor necrosis factor (TNF-α) immunoreactions. Histopathological changes were recorded in testicular, seminal vesicle, and prostatic tissues. Yet, co-administration of CoQ10 with TiO2NPs and Cd substantially mitigated these adverse consequences. The most notable aspect is that it effectively lowered testicular tissue Ti and Cd levels. It also improved oxidant status, hormonal profile, and sperm picture. CoQ10 minimized the testicular damage implied by histological examination. Furthermore, CoQ10 significantly diminished TiO2NPs and Cd-induced Caspase-3 and TNF-α immunoexpression in testicular tissue. Conclusion: As a result, CoQ10 could be utilized as a safe remedy to protect male reproductive physiology from TiO2NPs and Cd damage.

10.
Sci Rep ; 13(1): 19621, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949908

RESUMO

Methylene blue (MB) dye is considered a well-known dye in many industries and the low concentration of MB is considered very polluted for all environment if it discharged without any treatment. For that reason, many researchers used advanced technologies for removing MB such as the electrochemical methods that considered very simple and give rapid response. Considering these aspects, a novel quartz crystal microbalance nanosensors based on different concentrations of PVC@SiO2 were designed for real-time adsorption of MB dye in the aqueous streams at different pHs and different temperatures. The characterization results of PVC@SiO2 showed that the PVC@SiO2 have synthesized in spherical shape. The performance of the designed QCM-Based PVC@SiO2 nanosensors were examined by the QCM technique. The sensitivity of designed nanosensors was evaluated at constant concentration of MB (10 mg/L) at different pHs (2, 7 and 11) and temperatures (20 °C, 25 °C, and 30 °C). From the experimental, the best concentration of PVC@SiO2 was 3% for adsorbed 9.99 mg of cationic methylene blue at pH 11 and temperature 20 °C in only 5.6 min.

11.
Heliyon ; 9(9): e19354, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662722

RESUMO

Finding eco-friendly alternatives for antibiotics in treating bacterial diseases affecting the aquaculture sector is essential. Herbal plants are promising alternatives, especially when combined with nanomaterials. Neem (Azadirachta indica) leaves extract was synthesized using a chitosan nanocapsule. Chitosan neem nanocapsule (CNNC) was tested in-vitro and in-vivo against the Aeromonas sobria (A. sobria) challenge in Nile tilapia. A preliminary experiment with 120 Nile tilapia was conducted to determine the therapeutic dose of CNNC, which was established to be 1 mg/L. A treatment study was applied for seven days using 200 fish categorized into four groups (10 fish/replicate: 50 fish/group). The first (control) and second (CNNC) groups were treated with 0 and 1 mg/L CNNC in water without being challenged. The third (A. sobria) and fourth (CNNC + A. sobria) groups were treated with 0 and 1 mg/L CNNC, respectively, and challenged with A. sobria (1 × 107 CFU/mL). Interestingly, CNNC had an in-vitro antibacterial activity against A. sobria; the minimum inhibitory concentration and minimum bactericidal concentration of CNNC against A. sobria were 6.25 and 12.5 mg/mL, respectively. A. sobria challenge caused behavioral alterations, skin hemorrhage, fin rot, and reduced survivability (60%). The infected fish suffered a noticeable elevation in the malondialdehyde level and hepato-renal function markers (aspartate aminotransferase, alanine aminotransferase, and creatinine). Moreover, a clear depletion in the level of the antioxidant and immune indicators (catalase, reduced glutathione, lysozymes, nitric oxide, and complement 3) was obvious in the A. sobria group. Treatment of the A. sobria-challenged fish with 1 mg/L CNNC recovered these parameters and enhanced fish survivability. Overall, CNNC can be used as a new versatile tool at 1 mg/L as a water treatment for combating the A. sobria challenge for sustainable aquaculture production.

12.
Metabolites ; 13(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37512578

RESUMO

White, green, and oolong teas are produced from the tea plant (Camellia sinensis (L.) Kuntze) and are reported to have anti-obesity and hypolipidemic effects. The current study aims to investigate the anti-obesity effects of a tea mixture nano-formulation by targeting the AMPK/Sirt-1/GLUT-4 axis in rats. In vitro lipase and α-amylase inhibition assays were used to determine the active sample, which was then incorporated into a nanoparticle formulation subjected to in vivo anti-obesity testing in rats by measuring the expression level of different genes implicated in adipogenesis and inflammation using qRT-PCR. Moreover, metabolomic analysis was performed for each tea extract using LC/ESI MS/MS coupled to chemometrics in an attempt to find a correlation between the constituents of the extracts and their biological activity. The in vitro pancreatic lipase and α-amylase inhibition assays demonstrated more effective activity in the tea mixture than the standards, orlistat and acarbose, respectively, and each tea alone. Thus, the herbal tea mixture and its nanoparticle formulation were evaluated for their in vivo anti-obesity activity. Intriguingly, the tea mixture significantly decreased the serum levels of glucose and triglycerides and increased the mRNA expression of GLUT-4, P-AMPK, Sirt-1, and PPAR-γ, which induce lipolysis while also decreasing the mRNA expression of TNF-α and ADD1/SREBP-1c, thereby inhibiting the inflammation associated with obesity. Our study suggests that the tea mixture nano-formulation is a promising therapeutic agent in the treatment of obesity and may also be beneficial in other metabolic disorders by targeting the AMPK/Sirt-1/Glut-4 pathway.

13.
Gels ; 9(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37623096

RESUMO

Heavy metal toxicity is an important issue owing to its harmful influence on fish. Hence, this study is a pioneer attempt to verify the in vitro and in vivo efficacy of a magnetite (Fe3O4) nanogel (MNG) in mitigating waterborne lead (Pb) toxicity in African catfish. Fish (n = 160) were assigned into four groups for 45 days. The first (control) and second (MNG) groups were exposed to 0 and 1.2 mg L-1 of MNG in water. The third (Pb) and fourth (MNG + Pb) groups were exposed to 0 and 1.2 mg L-1 of MNG in water and 69.30 mg L-1 of Pb. In vitro, the MNG caused a dramatic drop in the Pb level within 120 h. The Pb-exposed group showed the lowest survival (57.5%) among the groups, with substantial elevations in hepato-renal function and lipid peroxide (MDA). Moreover, Pb exposure caused a remarkable decline in the protein-immune parameters and hepatic antioxidants, along with higher Pb residual deposition in muscles and obvious histopathological changes in the liver and kidney. Interestingly, adding aqueous MNG to Pb-exposed fish relieved these alterations and increased survivability. Thus, MNG is a novel antitoxic agent against Pb toxicity to maintain the health of C. gariepinus.

14.
Food Chem Toxicol ; 182: 114191, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980978

RESUMO

This study investigated the effect of oral dosing of titanium dioxide nanoparticles (TNPs) and cadmium (Cd2+) on rat liver and the potential protective role of coenzyme Q10 (CQ10) against TNPs and Cd2+-induced hepatic injury. Seventy male Sprague Dawley rats were divided into seven groups and orally given distilled water, corn oil, CQ10 (10 mg/kg b.wt), TNPs (50 mg/kg b.wt), Cd2+ (5 mg/kg b.wt), TNPs + Cd2+, or TNPs + Cd2++CQ10 by gastric gavage for 60 successive days. The results showed that individual or mutual exposure to TNPs and Cd2+ significantly increased the serum levels of various hepatic enzymes and lipids, depleted the hepatic content of antioxidant enzymes, and increased malondialdehyde. Moreover, the hepatic titanium and Cd2+ content were increased considerably in TNPs and/or Cd2+-exposed rats. Furthermore, marked histopathological perturbations with increased immunoexpression of tumor necrosis factor-alpha and nuclear factor kappa B were evident in TNPs and/or Cd2+-exposed rats. However, CQ10 significantly counteracted the damaging effect of combined exposure of TNPs and Cd2+ on the liver. The study concluded that TNPs and Cd2+ exposure harm hepatic function and its architecture, particularly at their mutual exposure, but CQ10 could be a candidate protective agent against TNPs and Cd2+ hepatotoxic impacts.


Assuntos
Nanopartículas , Fator de Necrose Tumoral alfa , Ratos , Masculino , Animais , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Titânio/toxicidade , Cádmio/toxicidade , Cádmio/metabolismo , Estresse Oxidativo , Ratos Sprague-Dawley , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fígado , Nanopartículas/toxicidade
15.
Nanomaterials (Basel) ; 13(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36616006

RESUMO

Methylene blue (MB) dye is a common colorant used in numerous industries, particularly the textile industry. When methylene blue is discharged into water bodies without being properly treated, it may seriously damage aquatic and human life. As a result, a variety of methods have been established to remove dyes from aqueous systems. Thanks to their distinguishing features e.g., rapid responsiveness, cost-effectiveness, potential selectivity, portability, and simplicity, the electrochemical methods provided promising techniques. Considering these aspects, a novel quartz crystal microbalance nanosensors based on green synthesized magnesium ferrite nanoparticles (QCM-Based MgFe2O4 NPs) and magnesium ferrite nanoparticles coated alginate hydrogel nanocomposite (QCM-Based MgFe2O4@CaAlg NCs) were designed for real-time detection of high concentrations of MB dye in the aqueous streams at different temperatures. The characterization results of MgFe2O4 NPs and MgFe2O4@CaAlg NCs showed that the MgFe2O4 NPs have synthesized in good crystallinity, spherical shape, and successfully coated by the alginate hydrogel. The performance of the designed QCM-Based MgFe2O4 NPs and MgFe2O4@CaAlg NCs nanosensors were examined by the QCM technique, where the developed nanosensors showed great potential for dealing with continuous feed, very small volumes, high concentrations of MB, and providing an instantaneous response. In addition, the alginate coating offered more significant attributes to MgFe2O4 NPs and enhanced the sensor work toward MB monitoring. The sensitivity of designed nanosensors was evaluated at different MB concentrations (100 mg/L, 400 mg/L, and 800 mg/L), and temperatures (25 °C, 35 °C, and 45 °C). Where a real-time detection of 400 mg/L MB was achieved using the developed sensing platforms at different temperatures within an effective time of about 5 min. The results revealed that increasing the temperature from 25 °C to 45 °C has improved the detection of MB using the MgFe2O4@CaAlg NCs nanosensor and the MgFe2O4@CaAlg NCs nanosensor exhibited high sensitivity for different MB concentrations with more efficiency than the MgFe2O4 NPs nanosensor.

16.
Materials (Basel) ; 15(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36143550

RESUMO

Cd(II) heavy metal is an extremely dangerous hazardous material for both humans and the environment. Its high toxicity is the reason behind the examination of new techniques for detecting very small concentrations of Cd(II). Recently, Quartz Crystal Microbalance (QCM) has been one of the techniques that have been widely used to detect trace heavy metal ions in solutions. It is a simple, inexpensive, portable, and sensitive gravimetric sensor due to its quality sensitivity lowest to nanograms. In this work, Cuprospinel nanoparticles were synthesized through the green synthesis approach using Psidium guajava L. leaf extract as a reducing agent, which is the first scientific description to report the preparation of these nanoparticles by this method. Subsequently, the synthesized nanoparticles were subjected to the characterization of their crystallinity, structure, and morphology by the XRD, N2 adsorption-desorption, zeta potential, DLS, AFM, SEM, and TEM analyzers. The prepared Cuprospinel nanoparticles were evaluated as a nanosensor for the detection of the very low concentration of Cd(II) ions in aqueous solutions using the QCM technique. The results of the characterization proved that the Cuprospinel nanoparticles have formed in the nanoscale with sub-spherical shapes and particles size ranging from 20 to 80 nm. The BET surface area and pore size analysis revealed that the synthesized Cuprospinel nanoparticles possess a surface area of 47.3 m2/g, an average pore size of 1.5 nm, and a micropore volume of 0.064 cc/g. The QCM results demonstrated the success of the Cuprospinel nanoparticles sensor in detecting the tiny amounts of Cd(II) ions in the aqueous solutions with concentrations reaching about 3.6 ng/L.

17.
Water Environ Res ; 94(4): e10713, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35470523

RESUMO

Removal of selenite (Se (IV)) from wastewater is vital due to its more toxic and mobile properties. In this study, a novel dendritic silver-dendrites@ copper with hierarchical side-branches were synthesized through a two-pot rapid, facile, and green precipitation route. Characterization of the dendrites by transmission electron microscope (TEM), scanning electron microscope (SEM), dynamic light scattering (DLS), and X-ray diffraction spectroscopy (XRD) confirmed the proper preparation of dendritic AgCu nanostructure. Significantly, the Ag@Cu nanostructure has high specific surface area (150 m2 /g) and excellent adsorption activity toward selenite. The adsorption rate of Se (IV) on the dendritic AgCu reaches 94% within 60 min under normal adsorption procedures. Both adsorption kinetics and isotherms have been described well by the pesudo-second order model and Langmuir model, respectively. The noticeable high adsorption capabilities can mainly accredit to the effect of the hierarchical side-branched structure. Therefore, the dendritic AgCu nanostructure has a room of treating heavy metals-contaminated industrial wastewater streams. PRACTITIONER POINTS: Silver-dendrites@ copper with hierarchical side-branches were synthesized through a rapid and green precipitation route using copper nanoparticles. The prepared nanostructure was applied for Se (IV) adsorption at varying operational conditions (contact time, pH, and dose). High adsorption capacity for Se (IV) up to 173.1 mg/g was achieved using the prepared nanoparticles applying Langmuir isotherm model.

18.
Nanomaterials (Basel) ; 12(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296809

RESUMO

Pb(II) is a significant contaminant that is known to have negative effects on both humans and animals. Recent industrial operations have exacerbated these consequences, and their release of several contaminants, including lead ions, has drawn attention to the potential effects on human health. Therefore, there is a lot of interest in the rapid, accurate, and selective detection of lead ions in various environmental samples. Sensors-based nanomaterials are a significant class among the many tools and methods developed and applied for such purposes. Therefore, a novel green synthesized cobalt ferrite (CoFe2O4) nanoparticles and functionalized CoFe2O4/Ca-alginate nanocomposite was designed and successfully synthesized for the fabrication of nanoparticles and nanocomposite-coated quartz crystal microbalance (QCM) nanosensors to detect the low concentrations of Pb(II) ions in the aqueous solutions at different temperatures. The structural and morphological properties of synthesized nanoparticles and nanocomposite were characterized using different tools such as X-ray diffraction (XRD), N2 adsorption-desorption isotherm, dynamic light scattering (DLS), zeta potential analyzer (ζ-potential), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The QCM results revealed that the green synthesized CoFe2O4 nanoparticles and functionalized CoFe2O4/Ca-alginate nanocomposite-coated QCM nanosensors exhibited high sensitivity, stability, and rapid detection of Pb(II) ions in the aqueous solutions at different temperature. The lowest detection limit for Pb(II) ions in the aqueous solutions could reach 125 ng, which resulted in a frequency shift of 27.49 ± 0.81, 23.63 ± 0.90, and 19.57 ± 0.86 Hz (Δf) for the QCM detector coated with green synthesized CoFe2O4 nanoparticles thin films, and 25.85 ± 0.85, 33.87 ± 0.73, and 6.87 ± 0.08 Hz (Δf) for the QCM detector coated with CoFe2O4/Ca-Alg nanocomposite thin films in a real-time of about 11, 13, and 13 min at 25 °C, 35 °C, and 45 °C, respectively. In addition, the resonance frequency change results showed the superiority of functionalized CoFe2O4/Ca-alginate nanocomposite coated QCM nanosensor over CoFe2O4 nanoparticles towards Pb(II) ions detecting, which attributed to the beneficial properties of alginate biopolymer.

19.
Materials (Basel) ; 15(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36431696

RESUMO

Silica nanoparticles (SiO2 NPs) are one of the most well-studied inorganic nanoparticles for many applications. They offer the advantages of tunable size, biocompatibility, porous structure, and larger surface area. Thus, in this study, a high yield of SiO2 NPs was produced via the chemical treatment of rice husk ash by the sol-gel method. Characteristics of the prepared SiO2 NPs were validated using different characterization techniques. Accordingly, the phase, chemical composition, morphological, and spectroscopic properties of the prepared sample were studied. The average particle size of the SiO2 NPs was found to be approximately 60-80 nm and the surface area was 78.52 m²/g. The prepared SiO2 NPs were examined as photocatalysts for the degradation of methyl orange (MO) dye under UV irradiation. It was found that the intensity of the characteristic absorption band of MO decreased gradually with exposure time increasing, which means the successful photodegradation of MO by SiO2 NPs. Moreover, the antibacterial activity of obtained SiO2 NPs was investigated by counting the coliform bacteria in the surface water using the most probable number (MPN) index method. The results revealed that the MPN of coliform bacteria untreated and treated by SiO2 NPs was estimated to be 170 CFU/100 mL and 10 CFU/100 mL, respectively, resulting in bacterial growth inhibition of 94.12%.

20.
Plants (Basel) ; 11(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684189

RESUMO

Water stress is considered one of the most environmental hazards that threaten agricultural productivity. Therefore, two field experiments were conducted to investigate the impact of biochar (6 t ha-1 as soil amendment), ZnO NPs (50 mg L-1 as foliar application), and their combination on growth, yield, and water use efficiency (WUE) of rice grown under four irrigation deficit treatments (i.e., irrigation every 3, 6, 9 and 12 d). The irrigation every 3 d was considered as the control in the current study. For this purpose, biochar was prepared through the pyrolysis of corn stalk and rice husk at 350 °C for 3 h, while sonochemical combined with the precipitation method was used to prepare zinc oxide nanoparticles (ZnO NPs) from zinc acetate. The morphological structures of the produced biochar and ZnO NPs were characterized using X-ray diffraction (XRD), N2 gas adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results exhibited that the combination of biochar alongside ZnO NPs resulted in a positive significant effect on the physiological traits such as chlorophyll content, relative water content, plant height, and leaf area index as well as yield-associated components (i.e., number of panicles m-2, number of filled grain per panicle, 1000-grain weight), and biological and grain yield ha-1 when rice plants were irrigated every 9 days without a significant difference with those obtained from the control treatment (irrigation every 3 d). In conclusion, the combination of biochar and ZnO NPs could be recommended as an optimal approach to maximize both grain yield ha-1 and WUE of rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA