Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cancer Sci ; 111(6): 2123-2131, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32248641

RESUMO

HER2-targeting antibodies (trastuzumab, pertuzumab) and a HER2-directed antibody-drug conjugate (trastuzumab emtansine: T-DM1) are used for the treatment of HER2-overexpressing breast cancer. However, these treatments eventually become ineffective due to acquired resistance and there is an urgent need for alternative therapies. TAS0728 is a small-molecule, irreversible selective HER2 kinase inhibitor. In the present study, we established new in vivo models of cancer resistance by continuous exposure to a combination of trastuzumab and pertuzumab or to T-DM1 for evaluating the effect of TAS0728 on HER2 antibody-resistant populations. Treatment with trastuzumab and pertuzumab or with T-DM1 initially induced tumor regression in NCI-N87 xenografts. However, tumor regrowth during treatment indicated loss of drug effectiveness. In tumors with acquired resistance to trastuzumab and pertuzumab or to T-DM1, HER2-HER3 phosphorylation was retained. Switching to TAS0728 resulted in a significant anti-tumor effect associated with HER2-HER3 signal inhibition. No alternative receptor tyrosine kinase activation was observed in these resistant tumors. Furthermore, in a patient-derived xenograft model derived from breast cancer refractory to both trastuzumab/pertuzumab and T-DM1, TAS0728 exerted a potent anti-tumor effect. These results suggest that tumors with acquired resistance to trastuzumab and pertuzumab and to T-DM1 are still dependent on oncogenic HER2-HER3 signaling and are vulnerable to HER2 signal inhibition by TAS0728. These results provide a rationale for TAS0728 therapy for breast cancers that are refractory to established anti-HER2 therapies.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Ado-Trastuzumab Emtansina/farmacologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Receptor ErbB-3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Hepatol Res ; 49(9): 1066-1075, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31077496

RESUMO

AIM: Combined hepatocellular cholangiocarcinoma, subtype with stem-cell features, intermediate-cell subtype (INT) shows various histological appearances and could be misdiagnosed as intrahepatic cholangiocarcinoma (iCCA). In the present study, we aimed to identify specific histological diagnostic markers of INT. METHODS: We extracted RNA from FFPE sections of six INT, five iCCA, and five hepatocellular carcinoma (HCC) cases and compared gene expression between INT, iCCA, and HCC by microarray analysis. We then undertook immunohistochemical (IHC) staining of potential key molecules identified by microarray analysis, the conventional hepatocytic marker, hepatocyte paraffin (HepPar)-1, and the cholangiocytic markers, keratin (K) 7 and K19, on 35 INT, 25 iCCA, and 60 HCC cases. RESULTS: Microarray analysis suggested that malic enzyme 1 (ME1) was significantly upregulated in INT. Immunohistochemical analysis revealed that the positive rates of ME1 in INT, iCCA, and HCC were 77.1% (27/35), 28.0% (7/25), and 61.7% (37/60), respectively. Analysis of classification and regression trees based on IHC scores indicated that HepPar-1 could be a good candidate for discriminating HCC from the others with high sensitivity (93.3%) and high specificity (96.7%). A multiple logistic regression model and receiver operating characteristic curve analysis based on the IHC scores of ME1, K7, and K19 generated a composite score that can discriminate between INT and iCCA. Using this composite score, INT could be discriminated from iCCA with high sensitivity (88.6%) and high specificity (88.0%). CONCLUSIONS: We propose that ME1 is a useful diagnostic marker of INT when used in combination with other hepatocytic and cholangiocytic markers.

3.
Mol Cancer ; 15(1): 32, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27145964

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive neoplastic diseases, associated with a remarkably poor prognosis. However, the molecular mechanisms underlying the development of PDAC remain elusive. The aim of this study was to identify genes whose expressions are correlated with a poor prognosis in PDAC patients, and to unravel the mechanisms underlying the involvement of these genes in the development of the cancer. METHODS: Global gene expression profiling was conducted in 39 specimens obtained from Japanese patients with PDAC to identify genes whose expressions were correlated with a shorter overall survival. The effect of gene silencing or overexpression of ARHGEF15 in pancreatic cancer cell lines was examined by introducing siRNAs of ARHGEF15 or the ARHGEF15 expression vector. After assessing the effect of ARHGEF15 deregulation on the Rho-family proteins by pull-down assay, wound healing, transwell and cell viability assays were carried out to investigate the cellular phenotypes caused by the perturbation. RESULTS: The global mRNA expression profiling revealed that overexpression of ARHGEF15, a Rho-specific GEF, was significantly associated with a poor prognosis in patients with PDAC. We also found that the depletion of ARHGEF15 by RNA interference in pancreatic cancer cell lines downregulated the activities of molecules of the Rho signaling pathway, including RhoA, Cdc42 and Rac1. Then, we also showed that ARHGEF15 silencing significantly reduced the motility and viability of the cells, while its overexpression resulted in the development of the opposite phenotype in multiple pancreatic cancer cell lines. CONCLUSION: These data suggest that upregulation of ARHGEF15 contributes to the development of aggressive PDAC by increasing the growth and motility of the pancreatic cancer cells, thereby worsening the prognosis of these patients. Therefore, ARHGEF15 could serve as a novel therapeutic target in patients with PDAC.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Adenocarcinoma/patologia , Adulto , Idoso , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , RNA Interferente Pequeno/genética
4.
Mol Cancer ; 10: 31, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21447152

RESUMO

BACKGROUND: The retinoblastoma product (RB1) is frequently deregulated in various types of tumors by mutation, deletion, or inactivation through association with viral oncoproteins. The functional loss of RB1 is recognized to be one of the hallmarks that differentiate cancer cells from normal cells. Many researchers are attempting to develop anti-tumor agents that are preferentially effective against RB1-negative tumors. However, to identify patients with RB1-negative cancers, it is imperative to develop predictive biomarkers to classify RB1-positive and -negative tumors. RESULTS: Expression profiling of 30 cancer cell lines composed of 16 RB1-positive and 14 RB1-negative cancers was performed to find genes that are differentially expressed between the two groups, resulting in the identification of an RB1 signature with 194 genes. Among them, critical RB1 pathway components CDKN2A and CCND1 were included. We found that microarray data of the expression ratio of CCND1 and CDKN2A clearly distinguished the RB1 status of 30 cells lines. Measurement of the CCND1/CDKN2A mRNA expression ratio in additional cell lines by RT-PCR accurately predicted RB1 status (12/12 cells lines). The expression of CCND1/CDKN2A also correlated with RB1 status in xenograft tumors in vivo. Lastly, a CCND1/CDKN2A assay with clinical samples showed that uterine cervical and small cell lung cancers known to have a high prevalence of RB1-decifiency were predicted to be 100% RB1-negative, while uterine endometrial or gastric cancers were predicted to be 5-22% negative. All clinically normal tissues were 100% RB1-positive. CONCLUSIONS: We report here that the CCND1/CDKN2A mRNA expression ratio predicts the RB1 status of cell lines in vitro and xenograft tumors and clinical tumor samples in vivo. Given the high predictive accuracy and quantitative nature of the CCND1/CDKN2A expression assay, the assay could be utilized to stratify patients for anti-tumor agents with preferential effects on either RB1-positive or -negative tumors.


Assuntos
Ciclina D1/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Perfilação da Expressão Gênica , Neoplasias/genética , Proteína do Retinoblastoma/genética , Animais , Linhagem Celular Tumoral , Análise por Conglomerados , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HeLa , Células Hep G2 , Humanos , Transplante de Neoplasias , Neoplasias/patologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Nus , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Gastroenterology ; 137(4): 1346-57, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19549530

RESUMO

BACKGROUND & AIMS: The activation of Wnt/beta-catenin signaling causes the development of gastric and colon cancers. Sox17 represses Wnt/beta-catenin signaling and is down-regulated in colon cancer. This study was designed to elucidate the role of Sox17 during the course of gastrointestinal tumorigenesis. METHODS: Sox17 expression was examined in gastrointestinal tumors of mouse models and humans. The roles of Sox17 in gastric tumorigenesis were examined by cell culture experiments and by construction of Sox17 transgenic mice. RESULTS: Sox17 was induced in K19-Wnt1/C2mE mouse gastric tumors and K19-Wnt1 preneoplastic lesions, where Wnt/beta-catenin signaling was activated. Consistently, Wnt activation induced Sox17 expression in gastric cancer cells. In contrast, Sox17 was rarely detected by immunohistochemistry in gastric and colon cancers, whereas strong nuclear staining of Sox17 was found in >70% of benign gastric and intestinal tumors. Treatment with a demethylating agent induced Sox17 expression in gastric cancer cells, thus indicating the down-regulation of Sox17 by methylation. Moreover, transfection of Sox17 in gastric cancer cells suppressed both the Wnt activity and colony formation efficiency. Finally, transgenic expression of Sox17 suppressed dysplastic tumor development in K19-Wnt1/C2mE mouse stomach. CONCLUSIONS: Sox17 plays a tumor suppressor role through suppression of Wnt signaling. However, Sox17 is induced by Wnt activation in the early stage of gastrointestinal tumorigenesis, and Sox17 is down-regulated by methylation during malignant progression. It is therefore conceivable that Sox17 protects benign tumors from malignant progression at an early stage of tumorigenesis, and down-regulation of Sox17 contributes to malignant progression through promotion of Wnt activity.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias Gastrointestinais/metabolismo , Proteínas HMGB/metabolismo , Lesões Pré-Cancerosas/metabolismo , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Ciclo-Oxigenase 2/genética , Metilação de DNA , Regulação para Baixo , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genótipo , Proteínas HMGB/genética , Humanos , Oxirredutases Intramoleculares/genética , Queratina-19/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Regiões Promotoras Genéticas , Prostaglandina-E Sintases , Fatores de Transcrição SOXF/genética , Transdução de Sinais/genética , Fatores de Tempo , Transfecção , Células Tumorais Cultivadas , Regulação para Cima , Proteína Wnt1/genética , beta Catenina/metabolismo
6.
Genomics ; 94(4): 219-27, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19559782

RESUMO

CDK inhibitors CDKN1B (p27) and CDKN2A (p16) inhibit cell cycle progression. A lower expression level of only p27 has been correlated with poorer prognosis in various types of clinical cancers. The difference may be the result of distinct genes downstream of these CDK inhibitors. Here, we report that NF-Y transcription factor-targeted genes specifically down-regulated by p27 correlate with poor prognosis in multiple tumor types. We performed mRNA expression profiling in HCT116 cells over-expressing either p16 or p27 and identified their regulatory genes. In silico transcription factor prediction indicated that most of the genes specifically down-regulated by p27 are controlled by NF-Y. Under the hypothesis that NF-Y-targeted genes are responsible for poor prognosis, we predicted prognosis in four types of cancer based on genes with the NF-Y motif, and found a significant association between the expression of NF-Y-targeted genes and poor prognosis.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Proteínas de Ciclo Celular/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/genética , Fatores de Transcrição/metabolismo , Fator de Ligação a CCAAT/genética , Proteínas de Ciclo Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Células HCT116 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Prognóstico , RNA Mensageiro/metabolismo , Análise de Sobrevida , Fatores de Transcrição/genética
7.
BMC Genomics ; 10: 615, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20015407

RESUMO

BACKGROUND: Gastric cancers are generally classified into better differentiated intestinal-type tumor and poorly differentiated diffuse-type one according to Lauren's histological categorization. Although induction of prostaglandin E2 pathway promotes gastric tumors in mice in cooperation with deregulated Wnt or BMP signalings, it has remained unresolved whether the gastric tumor mouse models recapitulate either of human gastric cancer type. This study assessed the similarity in expression profiling between gastric tumors of transgenic mice and various tissues of human cancers to find best-fit human tumors for the transgenic mice models. RESULTS: Global expression profiling initially found gastric tumors from COX-2/mPGES-1 (C2mE)-related transgenic mice (K19-C2mE, K19-Wnt1/C2mE, and K19-Nog/C2mE) resembled gastric cancers among the several tissues of human cancers including colon, breast, lung and gastric tumors. Next, classification of the C2mE-related transgenic mice by a gene signature to distinguish human intestinal- and diffuse-type tumors showed C2mE-related transgenic mice were more similar to intestinal-type compared with diffuse one. We finally revealed that induction of Wnt pathway cooperating with the prostaglandin E2 pathway in mice (K19-Wnt1/C2mE mice) further reproduce features of human gastric intestinal-type tumors. CONCLUSION: We demonstrated that C2mE-related transgenic mice show significant similarity to intestinal-type gastric cancer when analyzed by global expression profiling. These results suggest that the C2mE-related transgenic mice, especially K19-Wnt1/C2mE mice, serve as a best-fit model to study molecular mechanism underlying the tumorigenesis of human gastric intestinal-type cancers.


Assuntos
Dinoprostona/metabolismo , Perfilação da Expressão Gênica , Neoplasias Gástricas/genética , Animais , Hibridização Genômica Comparativa , DNA de Neoplasias/genética , Dinoprostona/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/genética , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Proteínas Wnt/metabolismo
8.
Mol Cancer ; 8: 34, 2009 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-19500427

RESUMO

BACKGROUND: Wee1 is a tyrosine kinase regulating S-G2 cell cycle transition through the inactivating phosphorylation of CDC2. The inhibition of Wee1 kinase by a selective small molecule inhibitor significantly enhances the anti-tumor efficacy of DNA damaging agents, specifically in p53 negative tumors by abrogating S-G2 checkpoints, while normal cells with wild-type p53 are not severely damaged due to the intact function of the G1 checkpoint mediated by p53. Since the measurement of mRNA expression requires a very small amount of biopsy tissue and is highly quantitative, the development of a pharmacodynamic (PD) biomarker leveraging mRNA expression is eagerly anticipated in order to estimate target engagement of anti-cancer agents. RESULTS: In order to find the Wee1 inhibition signature, mRNA expression profiling was first performed in both p53 positive and negative cancer cell lines treated with gemcitabine and a Wee1 inhibitor, MK-1775. We next carried out mRNA expression profiling of skin samples derived from xenograft models treated with the Wee1 inhibitor to identify a Wee1 inhibitor-regulatory gene set. Then, the genes that were commonly modulated in both cancer cell lines and rat skin samples were extracted as a Wee1 inhibition signature that could potentially be used as a PD biomarker independent of p53 status. The expression of the Wee1 inhibition signature was found to be regulated in a dose-dependent manner by the Wee1 inhibitor, and was significantly correlated with the inhibition level of a direct substrate, phosphorylated-CDC2. Individual genes in this Wee1 inhibition signature are known to regulate S-G2 cell cycle progression or checkpoints, which is consistent with the mode-of-action of the Wee1 inhibitor. CONCLUSION: We report here the identification of an mRNA gene signature that was specifically changed by gemcitabine and Wee1 inhibitor combination treatment by molecular profiling. Given the common regulation of expression in both xenograft tumors and animal skin samples, the data suggest that the Wee1 inhibition gene signature might be utilized as a quantitative PD biomarker in both tumors and surrogate tissues, such as skin and hair follicles, in human clinical trials.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Perfilação da Expressão Gênica , Proteínas Nucleares/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Análise de Variância , Animais , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Ciclina B/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Tirosina Quinases/metabolismo , Ratos , Ratos Nus , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
9.
Curr Genomics ; 9(5): 349-60, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19517027

RESUMO

Cancer is thought to be caused by a sequence of multiple genetic and epigenetic alterations which occur in one or more of the genes controlling cell cycle progression and signaling transduction. The complexity of carcinogenic mechanisms leads to heterogeneity in molecular phenotype, pathology, and prognosis of cancers.Genome-wide mutational analysis of cancer genes in individual tumors is the most direct way to elucidate the complex process of disease progression, although such high-throughput sequencing technologies are not yet fully developed. As a surrogate marker for pathway activation analysis, expression profiling using microarrays has been successfully applied for the classification of tumor types, stages of tumor progression, or in some cases, prediction of clinical outcomes. However, the biological implication of those gene expression signatures is often unclear. Systems biological approaches leverage the signature genes as a representation of changes in signaling pathways, instead of interpreting the relevance between each gene and phenotype. This approach, which can be achieved by comparing the gene set or the expression profile with those of reference experiments in which a defined pathway is modulated, will improve our understanding of cancer classification, clinical outcome, and carcinogenesis. In this review, we will discuss recent studies on the development of expression signatures to monitor signaling pathway activities and how these signatures can be used to improve the identification of responders to anticancer drugs.

10.
Cancer Med ; 6(1): 235-244, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27891760

RESUMO

The prognosis of patients with Borrmann type IV gastric cancer (Type IV) is extremely poor. Thus, there is an urgent need to elucidate the molecular mechanisms underlying the oncogenesis of Type IV and to identify new therapeutic targets. Although previous studies using whole-exome and whole-genome sequencing have elucidated genomic alterations in gastric cancer, none has focused on comprehensive genetic analysis of Type IV. To discover cancer-relevant genes in Type IV, we performed whole-exome sequencing and genome-wide copy number analysis on 13 patients with Type IV. Exome sequencing identified 178 somatic mutations in protein-coding sequences or at splice sites. Among the mutations, we found a mutation in muscle RAS oncogene homolog (MRAS), which is predicted to cause molecular dysfunction. MRAS belongs to the Ras subgroup of small G proteins, which includes the prototypic RAS oncogenes. We analyzed an additional 46 Type IV samples to investigate the frequency of MRAS mutation. There were eight nonsynonymous mutations (mutation frequency, 17%), showing that MRAS is recurrently mutated in Type IV. Copy number analysis identified six focal amplifications and one homozygous deletion, including insulin-like growth factor 1 receptor (IGF1R) amplification. The samples with IGF1R amplification had remarkably higher IGF1R mRNA and protein expression levels compared with the other samples. This is the first report of MRAS recurrent mutation in human tumor samples. Our results suggest that MRAS mutation and IGF1R amplification could drive tumorigenesis of Type IV and could be new therapeutic targets.


Assuntos
Mutação , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Análise de Sequência de DNA/métodos , Neoplasias Gástricas/patologia , Proteínas ras/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Exoma , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Receptor IGF Tipo 1 , Deleção de Sequência , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
11.
Cancer Res ; 69(7): 2729-33, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19318548

RESUMO

Mutations in bone morphogenetic protein (BMP) receptor 1A (BMPR1A) are responsible for a subset of cases of juvenile polyposis (JP) syndrome that develops hamartomatous tumors in the gastrointestinal tract. Mouse genetic studies have shown that suppression of BMP signaling in the intestines causes JP-type hamartoma development. Here, we generated K19-Nog transgenic mice expressing noggin, a BMP antagonist, in gastric epithelium. However, inhibition of BMP signaling did not cause gastric phenotypes. We thus crossed K19-Nog with K19-C2mE mice that expressed Ptgs2 and Ptges in the stomach to generate compound transgenic mice. Expression of Ptgs2 and Ptges results in prostaglandin E(2) (PGE(2)) biosynthesis, and both enzymes are induced in most human gastrointestinal tumors. Importantly, K19-Nog/C2mE compound mice developed gastric hamartomas that were morphologically similar to those found in JP with mucin-containing dilated cysts and inflammatory infiltration. Notably, treatment of K19-Nog/C2mE mice with a cyclooxygenase-2 inhibitor, celecoxib, significantly reduced tumor size with suppression of angiogenesis, suggesting that induction of the PGE(2) pathway together with inhibition of BMP signaling is required for gastric hamartoma development. Moreover, microarray analyses revealed that canonical Wnt signaling target genes were not induced in K19-Nog/C2mE hamartomas, indicating that BMP inhibition and PGE(2) induction lead to gastric hamartoma development independent of the Wnt/beta-catenin pathway. These results, taken together, suggest that the PGE(2) pathway is an effective preventive target against BMP-suppressed gastric hamartomas, as well as for Wnt/beta-catenin-activated adenocarcinomas.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Dinoprostona/metabolismo , Hamartoma/metabolismo , Gastropatias/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Celecoxib , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/biossíntese , Hamartoma/genética , Hamartoma/patologia , Oxirredutases Intramoleculares/biossíntese , Oxirredutases Intramoleculares/genética , Queratina-19/biossíntese , Queratina-19/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Prostaglandina-E Sintases , Pirazóis/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais , Gastropatias/genética , Gastropatias/patologia , Sulfonamidas/farmacologia , Proteína Wnt1/biossíntese , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , beta Catenina/biossíntese , beta Catenina/genética , beta Catenina/metabolismo
12.
Mol Cancer Ther ; 8(6): 1460-72, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19509251

RESUMO

Because cyclin-dependent kinases (CDK) play a pivotal role in cancer progression, the development of CDK inhibitors has attracted attention in antitumor therapy. However, despite significant preclinical and clinical developments, CDK inhibition biomarkers for predicting efficacy against certain cancers in individual patients have not been identified. Here, we characterized a macrocyclic quinoxalin-2-one CDK inhibitor, compound A, and identified a gene biomarker for predicting its efficacy. Compound A showed 100-fold selectivity for CDK family proteins over other kinases and inhibited both E2F transcriptional activity and RNA polymerase II phosphorylation. Compound A treatment resulted in decreased proliferation in various tumor cell lines; however, the apoptosis induction rate differed significantly among the cell lines examined, which was consistent with roscovitine. By comparing the mRNA expression profiles of sensitive and resistant cell lines, we found that expression levels of an endogenous CDK inhibitor, p18(INK4C), showed a strong negative correlation to the sensitivity. In fact, p18 status was correlated with the response to CDK inhibitor in an independent data set of multiple myeloma cell lines and silencing p18 expression increased the susceptibility of resistant cells to CDK inhibitors. The analysis of molecular mechanisms revealed that cells with lowered p18 had aberrant CDK6 and E2F activities, which resulted in a transcriptional down-regulation of Mcl-1, a key molecule associated with flavopiridol-induced apoptosis, thereby leading to susceptibility to therapeutic intervention with CDK inhibitors. These results identified a molecular basis for CDK inhibitors to exert an antitumor effect in p18-deficient cancers and support the clinical use of CDK inhibitors.


Assuntos
Inibidor de Quinase Dependente de Ciclina p18/genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Quinoxalinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HeLa , Humanos , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinoxalinas/química , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Spodoptera , Transfecção
13.
Mol Cancer Ther ; 8(11): 2992-3000, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19887545

RESUMO

Wee1 is a tyrosine kinase that phosphorylates and inactivates CDC2 and is involved in G(2) checkpoint signaling. Because p53 is a key regulator in the G(1) checkpoint, p53-deficient tumors rely only on the G(2) checkpoint after DNA damage. Hence, such tumors are selectively sensitized to DNA-damaging agents by Wee1 inhibition. Here, we report the discovery of a potent and selective small-molecule inhibitor of Wee1 kinase, MK-1775. This compound inhibits phosphorylation of CDC2 at Tyr15 (CDC2Y15), a direct substrate of Wee1 kinase in cells. MK-1775 abrogates G(2) DNA damage checkpoint, leading to apoptosis in combination with DNA-damaging chemotherapeutic agents such as gemcitabine, carboplatin, and cisplatin selectively in p53-deficient cells. In vivo, MK-1775 potentiates tumor growth inhibition by these agents, and cotreatment does not significantly increase toxicity. The enhancement of antitumor effect by MK-1775 was well correlated with inhibition of CDC2Y15 phosphorylation in tumor tissue and skin hair follicles. Our data indicate that Wee1 inhibition provides a new approach for treatment of multiple human malignancies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Dano ao DNA , Neoplasias/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteína Supressora de Tumor p53/deficiência , Animais , Apoptose/efeitos dos fármacos , Proteína Quinase CDC2 , Linhagem Celular Tumoral , Ciclina B/metabolismo , Quinases Ciclina-Dependentes , Sinergismo Farmacológico , Citometria de Fluxo , Células HeLa , Humanos , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Pirimidinonas , Ratos , Ratos Endogâmicos F344 , Ratos Nus , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Kidney Int ; 64(5): 1632-42, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14531794

RESUMO

BACKGROUND: Hyperglycemia is a known risk factor in the pathogenesis of nephropathy, and collagen accumulation due to an increase reactive oxygen species (ROS) has been suspected to be one of the reasons for high glucose-mediated diseases. However, molecular mechanisms that connect glucose stimulation, oxidative stress, and collagen induction are unknown. METHODS: We examined global changes in gene expression patterns following high glucose stimulation by using DNA microarray technology in cultured human mesangial cells. The expression of vitamin D3 up-regulated protein-1 (VDUP-1), our candidate for the molecular mediator, was evaluated in the human mesangial cells, mouse mesangial cell line, and kidneys of diabetic mice by quantitative reverse transcription-polymerase chain reaction (RT-PCR). Truncated VDUP-1 proteins were used to test the effects of VDUP-1 on the biosynthesis of collagen in mesangial cells. RESULTS: Expression of VDUP-1, which was reported as an inhibitor of thioredoxin, was induced rapidly and constantly after exposure to high concentrations of glucose upon analysis with DNA microarray. Overexpression of VDUP-1 gene in cultured mesangial cells resulted in type IV collagen alpha1 chain (COL4A1) mRNA induction and accumulation of type IV collagen protein. However, induction of COL4A1 expression was abolished with a deletion mutant of VDUP-1, which lost thioredoxin-interacting domain. Also, streptozotocin-induced diabetic mice were shown to overexpress VDUP-1 as well as COL4A1. CONCLUSION: VDUP-1 mediates collagen accumulation in mesangial cells and could be the molecular mediator/marker for fibrosis in diabetic nephropathy caused by chronic hyperglycemia such as diabetes.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Colágeno Tipo IV/genética , Nefropatias Diabéticas/fisiopatologia , Mesângio Glomerular/fisiologia , Tiorredoxinas , Animais , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/patologia , Fibrose , Deleção de Genes , Expressão Gênica , Mesângio Glomerular/patologia , Humanos , Hiperglicemia/patologia , Hiperglicemia/fisiopatologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos
15.
J Biol Chem ; 278(47): 46654-60, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-13129912

RESUMO

Obesity is currently considered as an epidemic in the western world, and it represents a major risk factor for life-threatening diseases such as heart attack, stroke, diabetes, and cancer. Taking advantage of DNA microarray technology, we tried to identify the molecules explaining the relationship between obesity and vascular disorders, comparing mRNA expression of about 12,000 genes in white adipose tissue between normal, high fat diet-induced obesity (DIO) and d-Trp34 neuropeptide Y-induced obesity in mice. Expression of monocyte chemoattractant protein-1 (MCP-1) mRNA displayed a 7.2-fold increase in obese mice as compared with normal mice, leading to substantially elevated MCP-1 protein levels in adipocytes. MCP-1 levels in plasma were also increased in DIO mice, and a strong correlation between plasma MCP-1 levels and body weight was identified. We also showed that elevated MCP-1 protein levels in plasma increased the CD11b-positive monocyte/macrophage population in DIO mice. Furthermore, infusion of MCP-1 into lean mice increased the CD11b-positive monocyte population without inducing changes in body weight. Given the importance of MCP-1 in activation of monocytes and subsequent atherosclerotic development, these results suggest a novel role of adiposity in the development of vascular disorders.


Assuntos
Antígeno CD11b/análise , Quimiocina CCL2/fisiologia , Monócitos/citologia , Obesidade/sangue , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Animais , Arteriosclerose/etiologia , Quimiocina CCL2/sangue , Quimiocina CCL2/genética , Perfilação da Expressão Gênica , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Obesidade/complicações , RNA Mensageiro/análise
16.
Biochem Biophys Res Commun ; 298(5): 714-9, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12419312

RESUMO

Bile acids play an essential role in the solubilization and absorption of dietary fat and lipid-soluble vitamins. Bile acids also modulate the transcription of various genes for enzymes and transport proteins for their own and cholesterol homeostasis through binding to nuclear receptors. Here we report a novel category of bile acid receptor, a membrane-type G protein-coupled receptor (GPCR), BG37. Bile acids induced rapid and dose-dependent elevation of intracellular cAMP levels in BG37-expressing cells, but not in mock-transfected cells, independently of nuclear receptor expression. The rank order of potency of various bile acids for BG37-expressing cells was different from that for the nuclear receptor-mediated response. These observations demonstrate the presence of two independent signaling pathways for bile acids; membrane-type GPCR for rapid signaling and nuclear receptors for delayed signaling. Expression of BG37 was detected in various specific tissues, suggesting its physiological role, although it remains to be further characterized.


Assuntos
Ácidos e Sais Biliares/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Ácidos e Sais Biliares/farmacologia , Células CACO-2 , Linhagem Celular , AMP Cíclico/biossíntese , DNA/genética , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Humanos , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA