Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 13(9): 4456-61, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23937343

RESUMO

A high photovoltage is an essential ingredient for the construction of a high-efficiency quantum dot sensitized solar cell (QDSSC). In this paper we present a novel configuration of QDSSC which incorporates the photoinduced dipole (PID) phenomenon for improved open circuit voltage (Voc). This configuration, unlike previously studied ones with molecular dipoles, is based on a dipole moment which is created only under illumination and is a result of exciton dissociation. The generation of photodipoles was achieved by the creation of long-lived trapped holes inside a core of type-II ZnSe/CdS colloidal core/shell QDs, which are placed on top of the standard CdS QD sensitizer layer. Upon photoexcitation, the created photodipole negatively shifts the TiO2 energy bands, resulting in a photovoltage that is higher by ∼100 mV compared to the standard cell, without type-II QDs. The extra photovoltage gained diminishes the excessive overpotential losses caused by the energetic difference between the CdS sensitizer layer and the TiO2, without harming the charge injection processes. Moreover, we show that the extent of the additional photovoltage is controlled by the illumination intensity. This work provides new understanding regarding the operation mechanisms of photoelectrochemical cells, while presenting a new strategy for constructing a high-voltage QDSSCs. In addition, the PID effect has the potential to be implemented in other promising photovoltaic technologies.

2.
Nano Lett ; 13(12): 5832-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24195698

RESUMO

The optical diffraction limit imposes a bound on imaging resolution in classical optics. Over the last twenty years, many theoretical schemes have been presented for overcoming the diffraction barrier in optical imaging using quantum properties of light. Here, we demonstrate a quantum superresolution imaging method taking advantage of nonclassical light naturally produced in fluorescence microscopy due to photon antibunching, a fundamentally quantum phenomenon inhibiting simultaneous emission of multiple photons. Using a photon counting digital camera, we detect antibunching-induced second and third order intensity correlations and perform subdiffraction limited quantum imaging in a standard wide-field fluorescence microscope.


Assuntos
Microscopia/métodos , Nanotecnologia , Óptica e Fotônica , Luz , Fótons
3.
Phys Chem Chem Phys ; 14(12): 4271-5, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22354096

RESUMO

A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent. This is attributed to the presence of an organic barrier layer due to the relatively long-chain organic ligands of the QDs under study. This system, analogous to carbon nanotube-QD hybrids, holds potential for a variety of applications, including photovoltaics, luminescence tagging and optoelectronics.


Assuntos
Nanotubos/química , Pontos Quânticos , Enxofre/química , Tungstênio/química , Compostos de Cádmio/química , Coloides/química , Tamanho da Partícula , Compostos de Selênio/química , Semicondutores , Sulfetos/química , Propriedades de Superfície , Compostos de Zinco/química
4.
J Am Chem Soc ; 132(12): 4131-40, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20210314

RESUMO

Electron transfer (ET) through proteins, a fundamental element of many biochemical reactions, is studied intensively in aqueous solutions. Over the past decade, attempts were made to integrate proteins into solid-state junctions in order to study their electronic conductance properties. Most such studies to date were conducted with one or very few molecules in the junction, using scanning probe techniques. Here we present the high-yield, reproducible preparation of large-area monolayer junctions, assembled on a Si platform, of proteins of three different families: azurin (Az), a blue-copper ET protein, bacteriorhodopsin (bR), a membrane protein-chromophore complex with a proton pumping function, and bovine serum albumin (BSA). We achieve highly reproducible electrical current measurements with these three types of monolayers using appropriate top electrodes. Notably, the current-voltage (I-V) measurements on such junctions show relatively minor differences between Az and bR, even though the latter lacks any known ET function. Electron Transport (ETp) across both Az and bR is much more efficient than across BSA, but even for the latter the measured currents are higher than those through a monolayer of organic, C18 alkyl chains that is about half as wide, therefore suggesting transport mechanism(s) different from the often considered coherent mechanism. Our results show that the employed proteins maintain their conformation under these conditions. The relatively efficient ETp through these proteins opens up possibilities for using such biomolecules as current-carrying elements in solid-state electronic devices.


Assuntos
Transporte de Elétrons , Proteínas/química , Animais , Bovinos , Microscopia de Força Atômica , Modelos Moleculares , Soroalbumina Bovina , Propriedades de Superfície
5.
J Phys Chem Lett ; 5(15): 2717-22, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26277969

RESUMO

Significant overpotentials between the sensitizer and both the electron and hole conductors hamper the performance of sensitized solar cells, leading to a reduced photovoltage. We show that by using properly designed type-II quantum dots (QDs) between the sensitizer and the hole conductor in thin absorber cells, it is possible to increase the open circuit voltage (Voc) by more than 100 mV. This increase is due to the formation of a photoinduced dipole (PID) layer. Photogenerated holes in the type-II QDs are retained in the core for a relatively long time, allowing for the accumulation of a positively charged layer. Negative charges are, in turn, injected and accumulated in the TiO2 anode, creating a dipole moment, which negatively shifts the TiO2 conduction band relative to the electrolyte. We study this phenomenon using a unique TiO2/CdSe/(ZnSe:Te/CdS)/polysulfide system, where the formation of a PID depends on the color of the illumination. The PID concept thus introduces a new design strategy, where the operating parameters of the solar cell can be manipulated separately.

6.
ACS Nano ; 6(10): 8778-82, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22992215

RESUMO

Although colloidal quantum dots (QDs) exhibit excellent photostability under mild excitation, intense illumination makes their emission increasingly intermittent, eventually leading to photobleaching. We study fluorescence of two commonly used types of QDs under pulsed excitation with varying power and repetition rate. The photostability of QDs is found to improve dramatically at low repetition rates, allowing for prolonged optical saturation of QDs without apparent photodamage. This observation suggests that QD blinking is facilitated by absorption of light in a transient state with a microsecond decay time. Enhanced photostability of generic quantum dots under intense illumination opens up new prospects for fluorescence microscopy and spectroscopy.


Assuntos
Coloides/química , Pontos Quânticos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais
7.
Adv Mater ; 24(44): OP314-20, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23027548

RESUMO

Plasmonic antennas are key elements to control the luminescence of quantum emitters. However, the antenna's influence is often hidden by quenching losses. Here, the luminescence of a quantum dot coupled to a gold dimer antenna is investigated. Detailed analysis of the multiply excited states quantifies the antenna's influence on the excitation intensity and the luminescence quantum yield separately.


Assuntos
Ouro/química , Iluminação/métodos , Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Modelos Químicos , Pontos Quânticos , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Luz , Espalhamento de Radiação
8.
ACS Nano ; 4(3): 1293-8, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20155968

RESUMO

A new design of dye-sensitized solar cells involves colloidal semiconductor quantum dots that serve as antennas, funneling absorbed light to the charge separating dye molecules via nonradiative energy transfer. The colloidal quantum dot donors are incorporated into the solid titania electrode resulting in high energy transfer efficiency and significant improvement of the cell stability. This design practically separates the processes of light absorption and charge carrier injection, enabling us to optimize each of these separately. Incident photon-to-current efficiency measurements show a full coverage of the visible spectrum despite the use of a red absorbing dye, limited only by the efficiency of charge injection from the dye to the titania electrode. Time resolved luminescence measurements clearly relate this to Forster resonance energy transfer from the quantum dots to the dye. The presented design introduces new degrees of freedom in the utilization of quantum dot sensitizers for photovoltaic cells. In particular, it opens the way toward the utilization of new materials whose band offsets do not allow direct charge injection.

9.
ACS Nano ; 4(8): 4571-8, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20731440

RESUMO

Optical antennas are essential devices to interface light to nanoscale volumes and locally enhance the electromagnetic intensity. Various experimental methods can be used to quantify the antenna amplification on the emission process, yet characterizing the antenna amplification at the excitation frequency solely is a challenging task. Such experimental characterization is highly needed to fully understand and optimize the antenna response. Here, we describe a novel experimental tool to directly measure the antenna amplification on the excitation field independently of the emission process. We monitor the transient emission dynamics of colloidal quantum dots and show that the ratio of doubly to singly excited state photoluminescence decay amplitudes is an accurate tool to quantify the local excitation intensity amplification. This effect is demonstrated on optical antennas made of polystyrene microspheres and gold nanoapertures, and supported by numerical computations. The increased doubly excited state formation on nanoantennas realizes a new demonstration of enhanced light-matter interaction at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA