Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 24(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795204

RESUMO

The purification of H2-rich streams using membranes represents an important separation process, particularly important in the viewpoint of pre-combustion CO2 capture. In this study, the separation of H2 from a mixture containing H2 and CO2 using a zeolitic imidazolate framework (ZIF)-8 membrane is proposed from a theoretical point of view. For this purpose, the adsorption and diffusion coefficients of H2 and CO2 were considered by molecular simulation. The adsorption of these gases followed the Langmuir model, and the diffusion coefficient of H2 was much higher than that of CO2. Then, using the Maxwell-Stefan model, the H2 and CO2 permeances and H2/CO2 permselectivities in the H2-CO2 mixtures were evaluated. Despite the fact that adsorption of CO2 was higher than H2, owing to the simultaneous interference of adsorption and diffusion processes in the membrane, H2 permeation was more pronounced than CO2. The modeling results showed that, for a ZIF-8 membrane, the H2/CO2 permselectivity for the H2-CO2 binary mixture 80/20 ranges between 28 and 32 at ambient temperature.


Assuntos
Dióxido de Carbono/química , Deutério/química , Membranas Artificiais , Modelos Químicos , Modelos Moleculares , Zeolitas/química , Algoritmos
2.
Molecules ; 21(5)2016 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-27171067

RESUMO

A supported Pd-Au (Au 7wt%) membrane was produced by electroless plating deposition. Permeation tests were performed with pure gas (H2, H2, N2, CO2, CH4) for long time operation. After around 400 h under testing, the composite Pd-Au membrane achieved steady state condition, with an H2/N2 ideal selectivity of around 500 at 420 °C and 50 kPa as transmembrane pressure, remaining stable up to 1100 h under operation. Afterwards, the membrane was allocated in a membrane reactor module for methane steam reforming reaction tests. As a preliminary application, at 420 °C, 300 kPa of reaction pressure, space velocity of 4100 h(-1), 40% methane conversion and 35% hydrogen recovery were reached using a commercial Ni/Al2O3 catalyst. Unfortunately, a severe coke deposition affected irreversibly the composite membrane, determining the loss of the hydrogen permeation characteristics of the supported Pd-Au membrane.


Assuntos
Ouro/química , Hidrogênio/química , Paládio/química , Metano/química , Vapor , Propriedades de Superfície
3.
Nanomaterials (Basel) ; 12(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269312

RESUMO

In this work, a novel structure of a hydrogen-membrane reactor coupling HI decomposition and CO2 methanation was proposed, and it was based on the adoption of silica membranes instead of metallic, according to their ever more consistent utilization as nanomaterial for hydrogen separation/purification. A 2D model was built up and the effects of feed flow rate, sweep gas flow rate and reaction pressure were examined by CFD simulation. This work well proves the feasibility and advantage of the membrane reactor that integrates HI decomposition and CO2 methanation reactions. Indeed, two membrane reactor systems were compared: on one hand, a simple membrane reactor without proceeding towards any CO2 methanation reaction; on the other hand, a membrane reactor coupling the HI decomposition with the CO2 methanation reaction. The simulations demonstrated that the hydrogen recovery in the first membrane reactor was higher than the methanation membrane reactor. This was due to the consumption of hydrogen during the CO2 methanation reaction, occurring in the permeate side of the second membrane reactor system, which lowered the amount of hydrogen recovered in the outlet streams. After model validation, this theoretical study allows one to evaluate the effect of different operating parameters on the performance of both the membrane reactors, such as the pressure variation between 1 and 5 bar, the feed flow rate between 10 and 50 mm3/s and the sweep gas flow rate between 166.6 and 833.3 mm3/s. The theoretical predictions demonstrated that the best results in terms of HI conversion were 74.5% for the methanation membrane reactor and 67% for the simple membrane reactor.

4.
Membranes (Basel) ; 11(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34436398

RESUMO

Pervaporation is a peculiar membrane separation process, which is considered for integration with a variety of reactions in promising new applications. Pervaporation membrane reactors have some specific uses in sustainable chemistry, such as the esterification processes. This theoretical study based on the computational fluid dynamics method aims to evaluate the performance of a multi-bed pervaporation membrane reactor (including poly (vinyl alcohol) membrane) to produce ethyl levulinate as a significant fuel additive, coming from the esterification of levulinic acid. For comparison, an equivalent multi-bed traditional reactor is also studied at the same operating conditions of the aforementioned pervaporation membrane reactor. A computational fluid dynamics model was developed and validated by experimental literature data. The effects of reaction temperature, catalyst loading, feed molar ratio, and feed flow rate on the reactor's performance in terms of levulinic acid conversion and water removal were hence studied. The simulations indicated that the multi-bed pervaporation membrane reactor results to be the best solution over the multi-bed traditional reactor, presenting the best simulation results at 343 K, 2 bar, catalyst loading 8.6 g, feed flow rate 7 mm3/s, and feed molar ratio 3 with levulinic acid conversion equal to 95.3% and 91.1% water removal.

5.
Membranes (Basel) ; 10(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708235

RESUMO

In this novel conceptual fuel cell vehicle (FCV), an on-board CH4 steam reforming (MSR) membrane reformer (MR) is considered to generate pure H2 for supplying a Fuel Cell (FC) system, as an alternative to the conventional automobile engines. Two on-board tanks are forecast to store CH4 and water, useful for feeding both a combustion chamber (designed to provide the heat required by the system) and a multi tubes Pd-Ag MR useful to generate pure H2 via methane steam reforming (MSR) reaction. The pure H2 stream is hence supplied to the FC. The flue gas stream coming out from the combustion chamber is used to preheat the MR feed stream by two heat exchangers and one evaporator. Then, this theoretical work demonstrates by a 1-D model the feasibility of the MR based system in order to generate 5 kg/day of pure H2 required by the FC system for cruising a vehicle for around 500 km. The calculated CH4 and water consumptions were 50 and 70 kg, respectively, per 1 kg of pure H2. The on-board MR based FCV presents lower CO2 emission rates than a conventional gasoline-powered vehicle, also resulting in a more environmentally friendly solution.

6.
Membranes (Basel) ; 9(9)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461938

RESUMO

The main purposes of this study are to evaluate the performance of graphene membranes in the separation/purification of hydrogen from nitrogen from a theoretical point of view using the molecular dynamic (MD) simulation method, and to present details about molecular mechanisms of selective gas diffusion through nanoscale pores of graphene membranes at the simulated set conditions. On the other hand, permeance and perm-selectivity are two significant parameters of such a membrane that can be controlled by several variables such as pressure gradient, pore density, pore layer angles etc. Hence, in this work, the hydrogen and nitrogen permeating fluxes as well as the H2/N2 ideal perm-selectivity are investigated from a theoretical point of view in a two-layer nanoporous graphene (NPG) membrane through classical MD simulations, wherein the effects of pressure gradient, pore density, and pore angle on the NPG membrane performance are evaluated and discussed. Simulation outcomes suggest that hydrogen and nitrogen permeating fluxes increase as a consequence of an increment of pressure gradient across the membrane and pore density.

7.
Membranes (Basel) ; 9(8)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405178

RESUMO

Biohydrogen is a clean and viable energy carrier generated through various green and renewable energy sources such as biomass. This review focused on the application of membrane bioreactors (MBRs), emphasizing the combination of these devices with biological processes, for bio-derived hydrogen production. Direct biophotolysis, indirect biophotolysis, photo-fermentation, dark fermentation, and conventional techniques are discussed as the common methods of biohydrogen production. The anaerobic process membrane bioreactors (AnMBRs) technology is presented and discussed as a preferable choice for producing biohydrogen due to its low cost and the ability of overcoming problems posed by carbon emissions. General features of AnMBRs and operational parameters are comprehensively overviewed. Although MBRs are being used as a well-established and mature technology with many full-scale plants around the world, membrane fouling still remains a serious obstacle and a future challenge. Therefore, this review highlights the main benefits and drawbacks of MBRs application, also discussing the comparison between organic and inorganic membranes utilization to determine which may constitute the best solution for providing pure hydrogen. Nevertheless, research is still needed to overcome remaining barriers to practical applications such as low yields and production rates, and to identify biohydrogen as one of the most appealing renewable energies in the future.

8.
Membranes (Basel) ; 8(3)2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30126137

RESUMO

Hydrogen has attracted growing attention for various uses, and, particularly, for polymer electrolyte membrane fuel cells (PEMFCs) supply. However, PEMFCs need high grade hydrogen, which is difficult in storing and transportation. To solve these issues, hydrogen generation from alcohols and hydrocarbons steam reforming reaction has gained great consideration. Among the various renewable fuels, methanol is an interesting hydrogen source because at room temperature it is liquid, and then, easy to handle and to store. Furthermore, it shows a relatively high H/C ratio and low reforming temperature, ranging from 200 to 300 °C. In the field of hydrogen generation from methanol steam reforming reaction, a consistent literature is noticeable. Despite various reviews that are more devoted to describe from an experimental point of view the state of the art about methanol steam reforming reaction carried in conventional and membrane reactors, this work describes the progress in the last two decades about the modelling studies on the same reaction in membrane reactors.

9.
Membranes (Basel) ; 8(4)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340434

RESUMO

Methanol is currently considered one of the most useful chemical products and is a promising building block for obtaining more complex chemical compounds, such as acetic acid, methyl tertiary butyl ether, dimethyl ether, methylamine, etc. Methanol is the simplest alcohol, appearing as a colorless liquid and with a distinctive smell, and can be produced by converting CO2 and H2, with the further benefit of significantly reducing CO2 emissions in the atmosphere. Indeed, methanol synthesis currently represents the second largest source of hydrogen consumption after ammonia production. Furthermore, a wide range of literature is focused on methanol utilization as a convenient energy carrier for hydrogen production via steam and autothermal reforming, partial oxidation, methanol decomposition, or methanol⁻water electrolysis reactions. Last but not least, methanol supply for direct methanol fuel cells is a well-established technology for power production. The aim of this work is to propose an overview on the commonly used feedstocks (natural gas, CO2, or char/biomass) and methanol production processes (from BASF-Badische Anilin und Soda Fabrik, to ICI-Imperial Chemical Industries process), as well as on membrane reactor technology utilization for generating high grade hydrogen from the catalytic conversion of methanol, reviewing the most updated state of the art in this field.

10.
Membranes (Basel) ; 7(2)2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28333121

RESUMO

Glycerol represents an emerging renewable bio-derived feedstock, which could be used as a source for producing hydrogen through steam reforming reaction. In this review, the state-of-the-art about glycerol production processes is reviewed, with particular focus on glycerol reforming reactions and on the main catalysts under development. Furthermore, the use of membrane catalytic reactors instead of conventional reactors for steam reforming is discussed. Finally, the review describes the utilization of the Pd-based membrane reactor technology, pointing out the ability of these alternative fuel processors to simultaneously extract high purity hydrogen and enhance the whole performances of the reaction system in terms of glycerol conversion and hydrogen yield.

11.
Membranes (Basel) ; 4(1): 143-62, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24957126

RESUMO

The present work is focused on the investigation of the performance and long-term stability of two composite palladium membranes under different operating conditions. One membrane (Pd/porous stainless steel (PSS)) is characterized by a ~10 µm-thick palladium layer on a porous stainless steel substrate, which is pretreated by means of surface modification and oxidation; the other membrane (Pd/Al2O3) is constituted by a ~7 µm-thick palladium layer on an asymmetric microporous Al2O3 substrate. The operating temperature and pressure ranges, used for studying the performance of these two kinds of membranes, are 350-450 °C and 200-800 kPa, respectively. The H2 permeances and the H2/N2 selectivities of both membranes were investigated and compared with literature data. At 400 °C and 200 kPa as pressure difference, Pd/PSS and Pd/Al2O3 membranes exhibited an H2/N2 ideal selectivity equal to 11700 and 6200, respectively, showing stability for 600 h. Thereafter, H2/N2 selectivity of both membranes progressively decreased and after around 2000 h, dropped dramatically to 55 and 310 for the Pd/PSS and Pd/Al2O3 membranes, respectively. As evidenced by Scanning Electron Microscope (SEM) analyses, the pinholes appear on the whole surface of the Pd/PSS membrane and this is probably due to release of sulphur from the graphite seal rings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA